函數(shù)y=2sin(2x+
π
3
)的一個對稱中心( 。
A、(
π
6
,0)
B、(-
π
6
,0)
C、(
π
12
,0)
D、(-
π
12
,0)
考點:正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質
分析:令2x+
π
3
=kπ,k∈Z,可解得:x=
2
-
π
6
,k∈Z,即可得k=0時,由(-
π
6
,0)是函數(shù)y=2sin(2x+
π
3
)的一個對稱中心.
解答: 解:∵y=2sin(2x+
π
3

∴令2x+
π
3
=kπ,k∈Z,可解得:x=
2
-
π
6
,k∈Z,
∴k=0時,由(-
π
6
,0)是函數(shù)y=2sin(2x+
π
3
)的一個對稱中心.
故選:B.
點評:本題主要考查了正弦函數(shù)的圖象與性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,點E、F分別為棱AC與A1B1的中點.
(1)求三棱錐A1-EFC1的體積;
(2)求異面直線A1C與EF所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-1+log2(x-1).
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)求f(5)的值;
(Ⅲ)求函數(shù)f(x)的零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

向量
a
,
b
滿足:
a
b
=4,|
a
+
b
|=5,則|
a
-
b
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設S=
1+
1
12
+
1
22
+
1+
1
22
+
1
32
+
1+
1
32
+
1
42
+…+
1+
1
20142
+
1
20152
,則不大于S的最大整數(shù)[S]是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=tanx+log2
1+x
1-x
+1.
(Ⅰ)求f(
1
2
)+f(-
1
2
)的值;
(Ⅱ)若f(sinθ)>f(cosθ),θ為銳角,求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos2(x+
π
12
),g(x)=1+
1
2
sin2x.
(Ⅰ)設x=x0是函數(shù)y=f(x)圖象的一條對稱軸,求g(x0)的值.
(Ⅱ)求函數(shù)h(x)=f(x)+g(x)的單調遞增區(qū)間.
(Ⅲ)求最小正實數(shù)m,使得函數(shù)h(x)的圖象左平移m個單位所對應的函數(shù)是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明:cos8α-sin8α-cos2α=-
1
4
sin2αsin4α.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線x-
3
y+m=0與圓x2+y2-2y-2=0相切,則實數(shù)m=( 。
A、
3
或-
3
B、-
3
或3
3
C、-3
3
3
D、-3
3
或3
3

查看答案和解析>>

同步練習冊答案