已知9x-10·3x+9≤0,求函數(shù)y=x-1-4x+2的最大值和最小值
由9x-10·3x+9≤0得(3x-1)(3x-9)≤0,
解得1≤3x≤9.∴0≤x≤2.
令x=t,則≤t≤1,y=4t2-4t+2=42+1.
當(dāng)t=即x=1時(shí),ymin=1;
當(dāng)t=1即x=0時(shí),ymax=2.
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分) 已知函數(shù)的圖象與函數(shù)的圖象關(guān)于點(diǎn)A
(0,1)對(duì)稱(chēng).(1)求函數(shù)的解析式(2)若=+,且在區(qū)間(0,
上的值不小于,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知函數(shù)是上的奇函數(shù),且單調(diào)遞減,解關(guān)于的不等式,其中且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
已知函數(shù) ,.
(Ⅰ)當(dāng) 時(shí),求函數(shù) 的最小值;
(Ⅱ)當(dāng) 時(shí),討論函數(shù) 的單調(diào)性;
(Ⅲ)求證:當(dāng) 時(shí),對(duì)任意的 ,且,有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)和g(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),且f(x)=x2+2x.
(1)求函數(shù)g(x)的解析式;
(2)解不等式g(x)≥f(x)-|x-1|;
(3)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)f(x)=ax2+bx+c,(a<0)不等式f(x)>-2x的解集為(1,3).
(1)若方程f(x)+6a=0有兩個(gè)相等的實(shí)根,求f(x)的解析式;
(2)若f(x)的最大值為正數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
溫州某私營(yíng)公司生產(chǎn)一種產(chǎn)品,根據(jù)歷年的情況可知,生產(chǎn)該產(chǎn)品每天的固定成本為14000元,每生產(chǎn)一件該產(chǎn)品,成本增加210元.已知該產(chǎn)品的日銷(xiāo)售量與產(chǎn)量之間的關(guān)系式為
,每件產(chǎn)品的售價(jià)與產(chǎn)量之間的關(guān)系式為
.
(Ⅰ)寫(xiě)出該公司的日銷(xiāo)售利潤(rùn)與產(chǎn)量之間的關(guān)系式;
(Ⅱ)若要使得日銷(xiāo)售利潤(rùn)最大,每天該生產(chǎn)多少件產(chǎn)品,并求出最大利潤(rùn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知△ABC的周長(zhǎng)為,且,
(1)求邊AB的長(zhǎng);
(2)若△ABC的面積為,求角C的度數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)
已知函數(shù)的定義域是集合,函數(shù)的定義域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/47/f/1bxrc3.png" style="vertical-align:middle;" />
(Ⅰ)求集合,
(Ⅱ)若,求實(shí)數(shù)的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com