10.已知命題p:任意x∈R,sinx≤1,則( 。
A.¬p:存在x∈R,sinx≥1B.¬p:任意x∈R,sinx≥1
C.¬p:存在x∈R,sinx>1D.¬p:任意x∈R,sinx>1

分析 根據(jù)全稱命題的否定是特稱命題進(jìn)行判斷即可.

解答 解:命題是全稱命題,則命題的否定是特稱命題,
即存在x∈R,sinx>1,
故選:C

點(diǎn)評(píng) 本題主要考查含有量詞的命題的否定,根據(jù)全稱命題的否定是特稱命題是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知f(x)=|x-a|+|x-3|.
(1)當(dāng)a=1時(shí),求f(x)的最小值;
(2)若不等式f(x)≤3的解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,在△ABC中,AD⊥AB,$\overrightarrow{BC}$=2$\sqrt{3}$$\overrightarrow{BD}$,|$\overrightarrow{AD}$|=1,則$\overrightarrow{AC}$•$\overrightarrow{AD}$=( 。
A.2$\sqrt{3}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.命題“|x|+|y|≠0”是命題“x≠0或y≠0”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在平面直角坐標(biāo)系內(nèi),點(diǎn)A(0,1),B(0,-1),C(1,0),點(diǎn)P滿足$\overrightarrow{AP}•\overrightarrow{BP}=k|\overrightarrow{PC}{|^2}$.
(1)若k=2,求點(diǎn)P的軌跡方程;
(2)當(dāng)k=0時(shí),若$|λ\overrightarrow{AP}+\overrightarrow{BP}{|_{max}}=4$,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.過(guò)橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$左焦點(diǎn)F1作弦AB,則△ABF2(F2為右焦點(diǎn))的周長(zhǎng)是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)$y=\frac{lnx}{x}$的導(dǎo)數(shù)為( 。
A.$y=\frac{1-lnx}{x^2}$B.$y=\frac{1+lnx}{x^2}$C.$y=\frac{lnx-1}{x^2}$D.$y=\frac{x+lnx}{x^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,四邊形ABCD為矩形,PB=20,BC=30,PA⊥平面ABCD.
(1)證明:平面PCD⊥平面PAD;
(2)當(dāng)AB的長(zhǎng)為多少時(shí),面PAB與面PCD所成的二面角為60°?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,已知某幾何體的主視圖和左視圖是全等的等腰直角三角形,俯視圖是邊長(zhǎng)為2的正方形,那么它的體積是( 。
A.$\frac{4}{3}$B.$\frac{8}{3}$C.4D.$\frac{16}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案