為了解心肺疾病是否與年齡相關,現(xiàn)隨機抽取了40名市民,得到數(shù)據(jù)如下表:

 
患心肺疾病
不患心肺疾病
合計
大于40歲
16
 
 
小于等于40歲
 
12

合計
 
 
40
已知在全部的40人中隨機抽取1人,抽到不患心肺疾病的概率為
(1)請將列聯(lián)表補充完整;
(2)已知大于40歲患心肺疾病市民中,經(jīng)檢查其中有4名重癥患者,專家建議重癥患者住院治療,現(xiàn)從這16名患者中選出兩名,記需住院治療的人數(shù)為,求的分布列和數(shù)學期望;
(3)能否在犯錯誤的概率不超過0.01的前提下認為患心肺疾病與年齡有關?
下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:,其中

(1)詳見解析(2)


0
1
2
P



   10分
(3)所以在犯錯誤的概率不超過0.01的前提下認為患心肺疾病與年齡有關

解析試題分析:(1)根據(jù)在全部40人中隨機抽取1人抽到不患心肺疾病的概率為,可得不患心肺疾病的人數(shù),,,那么大于40歲不患心肺疾病的人數(shù)為,那么患心肺疾病的人數(shù)為40-16,即可得到列聯(lián)表;最后合計時每行,每列相加都是40;
(2)在患心肺疾病的16位患者中,有4位又患重癥患者,記住院人數(shù)為,則服從超幾何分布,,即可得到的分布列、數(shù)學期望以及方差.
(3)利用公式求得,與臨界值6.635比較,如果大于他說明有關,即可得到結論.此題比較基礎,尤其是最后一問,相關性的判定,要會看臨界值,就不成問題,比較基礎.
試題解析:(1)

 
患心肺疾病
不患心肺疾病
合計
大于40歲
16
4
20
小于等于40歲
8
12
20
合計
24
16
40
   4分
(2)可以取0,1,2    5分


   8分

0
1
2
P



   10分
(3)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某大型公益活動從一所名牌大學的四個學院中選出了名學生作為志愿者,參加相關的活
動事宜.學生來源人數(shù)如下表:

學院
外語學院
生命科學學院
化工學院
藝術學院
人數(shù)




 
(1)若從這名學生中隨機選出兩名,求兩名學生來自同一學院的概率;
(2)現(xiàn)要從這名學生中隨機選出兩名學生向觀眾宣講此次公益活動的主題.設其中來自外語學院的人數(shù)為,令,求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知盒中有10個燈泡,其中8個正品,2個次品.需要從中取出2只正品,每次取一個,取出后不放回,直到取出2個正品為止.設X為取出的次數(shù),求X的概率分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換.每次發(fā)球,勝方得1分,負方得0分.設在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負結果相互獨立.甲、乙的一局比賽中,甲先發(fā)球.
(1)求開始第4次發(fā)球時,甲、乙的比分為1比2的概率;
(2)表示開始第4次發(fā)球時乙的得分,求的期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某農(nóng)場計劃種植某種新作物,為此對這種作物的兩個品種(分別稱為品種甲和品種乙)進行田間試驗.選取兩大塊地,每大塊地分成n小塊地,在總共2n小塊地中,隨機選n小塊地種植品種甲,另外n小塊地種植品種乙.
(1)假設n=4,在第一大塊地中,種植品種甲的小塊地的數(shù)目記為X,求X的分布列和數(shù)學期望;
(2)試驗時每大塊地分成8小塊,即n=8,試驗結束后得到品種甲和品種乙在各小塊地上的每公頃產(chǎn)量(單位:kg/hm2)如下表:

品種甲
 
403
 
397
 
390
 
404
 
388
 
400
 
412
 
406
 
品種乙
 
419
 
403
 
412
 
418
 
408
 
423
 
400
 
413
 
分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗結果,你認為應該種植哪一品種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知關于的一次函數(shù)
(1)設集合,分別從集合中隨機取一個數(shù)作為,,求函數(shù)是增函數(shù)的概率;
(2)若實數(shù),滿足條件,求函數(shù)的圖象不經(jīng)過第四象限的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了解某市的交通狀況,現(xiàn)對其6條道路進行評估,得分分別為:5,6,7,8,9,10.規(guī)定評估的平均得分與全市的總體交通狀況等級如下表:

評估的平均得分



全市的總體交通狀況等級
不合格
合格
優(yōu)秀
(1)求本次評估的平均得分,并參照上表估計該市的總體交通狀況等級;
(2)用簡單隨機抽樣方法從這條道路中抽取條,它們的得分組成一個樣本,求該樣本的平均數(shù)與總體的平均數(shù)之差的絕對值不超過的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

第16屆亞運會于2010年11月12日在廣州舉辦,運動會期間來自廣州大學和中山大學的共計6名大學生志愿者將被隨機平均分配到跳水、籃球、體操這三個比賽場館服務,且跳水場館至少有一名廣州大學志愿者的概率是.
(1)求6名志愿者中來自廣州大學、中山大學的各有幾人?
(2)設隨機變量X為在體操比賽場館服務的廣州大學志愿者的人數(shù),求X的分布列及均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設連續(xù)擲兩次骰子得到的點數(shù)分別為m、n,令平面向量a=(m,n),b=(1,-3).
(1) 求使得事件“ab”發(fā)生的概率;
(2) 求使得事件“|a|≤|b|”發(fā)生的概率.

查看答案和解析>>

同步練習冊答案