13.若向量$\overrightarrow{OA}$=(0,1),|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|,$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{0}$,則|$\overrightarrow{AB}$|=$\sqrt{2}$.

分析 設(shè)出$\overrightarrow{OB}$的坐標(biāo),由已知列式求得$\overrightarrow{OB}$的坐標(biāo),可得$\overrightarrow{AB}$的坐標(biāo),則$|\overrightarrow{AB}|$可求.

解答 解:設(shè)$\overrightarrow{OB}=(x,y)$,
由$\overrightarrow{OA}$=(0,1),|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
得$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=1}\\{y=0}\end{array}\right.$,∴x=±1.
則$\overrightarrow{OB}=(-1,0)$或$\overrightarrow{OB}=(1,0)$,
∴$\overrightarrow{AB}=(-1,1)$或$\overrightarrow{AB}=(1,1)$.
則$|\overrightarrow{AB}|=\sqrt{2}$.
故答案為:$\sqrt{2}$.

點評 本題考查平面向量的數(shù)量積運算,考查了向量垂直的坐標(biāo)表示,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.二次函數(shù)f(x)=x2+2ax+b在區(qū)間(-∞,4)上是減函數(shù),你能確定的是(  )
A.a≥2B.b≥2C.a≤-4D.b≤-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)(x+2)n=a0+a1x+a2x2+…+anxn(n∈N*,n≥2),且a0,a1,a2成等差數(shù)列.
(1)求(x+2)n展開式的中間項;
(2)求(x+2)n展開式所有含x奇次冪的系數(shù)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點為F1,F(xiàn)2,點A在其右半支上,若$\overrightarrow{A{F}_{1}}$•$\overrightarrow{A{F}_{2}}$=0,若∠AF1F2∈(0,$\frac{π}{12}$),則該雙曲線的離心率e的取值范圍為(1,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$=(1,x-1),$\overrightarrow$=(y,2),若向量$\overrightarrow{a}$,$\overrightarrow$同向,則x+y的最小值為( 。
A.$\frac{1}{2}$B.2C.2$\sqrt{2}$D.2$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知M是直線l:x=-1上的動點,點F的坐標(biāo)是(1,0),過M的直線l′與l垂直,并且l′與線段MF的垂直平分線相交于點N
(Ⅰ)求點N的軌跡C的方程
(Ⅱ)設(shè)曲線C上的動點A關(guān)于x軸的對稱點為A′,點P的坐標(biāo)為(2,0),直線AP與曲線C的另一個交點為B(B與A′不重合),直線P′H⊥A′B,垂足為H,是否存在一個定點Q,使得|QH|為定值?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的焦點坐標(biāo)為(  )
A.(±3,0)B.(0,±3)C.(±9,0)D.(0,±9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知平面α、β和直線m、n,下列結(jié)論正確的是(  )
A.若m⊥α,m⊥n,則n∥αB.若m∥α,n∥α,則m∥n
C.若m?β,且α⊥β,則m⊥αD.若m⊥β,且α∥β,則m⊥α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.命題“對任意x∈R,都有f(x)≤0”的否定是( 。
A.對任意x∈R,都有f(x)>0B.存在x∈R,使f(x)>0
C.存在x∈R,使f(x)≥0D.對任意x∈R,都有f(x)≥0

查看答案和解析>>

同步練習(xí)冊答案