14.如果命題“p∧q”是假命題,“¬p”是真命題,那么( 。
A.命題p一定是真命題
B.命題q一定是真命題
C.命題q一定是假命題
D.命題q可以是真命題也可以是假命題

分析 根據(jù)復(fù)合命題的真假,判斷出p,q的真假即可.

解答 解:命題“p∧q”是假命題,“¬p”是真命題,
則p假,q可假可真,
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)合命題的判斷,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如果散點(diǎn)圖中所有的樣本點(diǎn)都落在一條斜率為2的直線上,則R2等于( 。
A.1B.2C.0D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期為4π,且其圖象向右平移$\frac{π}{5}$個(gè)單位后得到函數(shù)g(x)=sinωx的圖象,則φ等于( 。
A.-$\frac{π}{10}$B.-$\frac{π}{5}$C.$\frac{π}{10}$D.$\frac{π}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列說(shuō)法正確的是(  )
A.“a>b”是“a2>b2”的充分不必要條件
B.命題“?x0∈R,$x_0^2+1<0$”的否定是“?x∈R,x2+1>0”
C.關(guān)于x的方程x2+(a+1)x+a-2=0的兩實(shí)根異號(hào)的充要條件是a<1
D.命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=$\frac{sinx}{sinx+2sin\frac{x}{2}}$,則f(x)最小正周期為4π,奇偶性為偶.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.PM2.5是衡量空氣污染程度的一個(gè)指標(biāo),為了了解某市空氣質(zhì)量情況,從去年每天的PM2.5值的數(shù)據(jù)中隨機(jī)抽取40天的數(shù)據(jù),其頻率分布直方圖如圖所示.現(xiàn)將PM2.5的值劃分為如下等級(jí)
 PM2.5[0,100)[100,150)[150,200)[200,250]
 等級(jí) 一級(jí) 二級(jí) 三級(jí) 四級(jí)
用頻率估計(jì)概率.
(1)估計(jì)該市在下一年的360天中空氣質(zhì)量為一級(jí)天氣的天數(shù);
(2)在樣本中,按照分層抽樣的方法抽取8天的PM2.5值的數(shù)據(jù),再?gòu)倪@8個(gè)數(shù)據(jù)中隨機(jī)抽取5個(gè),求一級(jí)、二級(jí)、三級(jí)、四級(jí)天氣都有的概率;
(3)如果該市對(duì)環(huán)境進(jìn)行治理,治理后經(jīng)統(tǒng)計(jì),每天PM2.5值X近似滿(mǎn)足X~N(115,752),則治理后的PM2.5值的均值比治理前大約下降了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.將石子擺成如圖的梯形形狀,稱(chēng)數(shù)列5,9,14,20,…為“梯形數(shù)”.根據(jù)圖形的構(gòu)成,此數(shù)列的第2 016項(xiàng)與5的差,即a2016-5=( 。
A.2 018×2 014B.2 018×2 013C.1 011×2 015D.1 010×2 012

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.y=5-sin2x-4cosx最小值為( 。
A.-2B.0C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)a=${∫}_{0}^{\frac{π}{2}}$2cosxdx,則二項(xiàng)式(ax3-$\frac{1}{{x}^{2}}$)6展開(kāi)式中不含x3項(xiàng)的系數(shù)和是161.

查看答案和解析>>

同步練習(xí)冊(cè)答案