已知某類學(xué)習(xí)任務(wù)的掌握程度y與學(xué)習(xí)時(shí)間t(單位時(shí)間)之間的關(guān)系為y=f(t)=,這里我們稱這一函數(shù)關(guān)系為“學(xué)習(xí)曲線”.已知這類學(xué)習(xí)任務(wù)中的某項(xiàng)任務(wù)有如下兩組數(shù)據(jù):t=4,y=50%;t=8,y=80%.
(Ⅰ)試確定該項(xiàng)學(xué)習(xí)任務(wù)的“學(xué)習(xí)曲線”的關(guān)系式f(t);
(Ⅱ)若定義在區(qū)間[x1,x2]上的平均學(xué)習(xí)效率為,問(wèn)這項(xiàng)學(xué)習(xí)任務(wù)從哪一刻開(kāi)始的2個(gè)單位時(shí)間內(nèi)平均學(xué)習(xí)效率最高.
【答案】分析:(Ⅰ)由題意得,由此能求出“學(xué)習(xí)曲線”的關(guān)系式.
(Ⅱ)設(shè)從第x個(gè)單位時(shí)間起的2個(gè)單位時(shí)間內(nèi)的平均學(xué)習(xí)效率為η,令u=2-0.5x,能推導(dǎo)出在從第3個(gè)單位時(shí)間起的2個(gè)單位時(shí)間內(nèi)的平均學(xué)習(xí)效率最高.
解答:解:(Ⅰ)由題意得,
整理得,解得a=4,b=0.5,
所以“學(xué)習(xí)曲線”的關(guān)系式為
(Ⅱ)設(shè)從第x個(gè)單位時(shí)間起的2個(gè)單位時(shí)間內(nèi)的平均學(xué)習(xí)效率為η,則
令u=2-0.5x,則,
顯然當(dāng),即時(shí),η最大,
代入u=2-0.5x,得x=3,
所以,在從第3個(gè)單位時(shí)間起的2個(gè)單位時(shí)間內(nèi)的平均學(xué)習(xí)效率最高.
點(diǎn)評(píng):本題考查函數(shù)在生產(chǎn)生活中的實(shí)際應(yīng)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某類學(xué)習(xí)任務(wù)的掌握程度y與學(xué)習(xí)時(shí)間t(單位時(shí)間)之間的關(guān)系為y=f(t)=
1
1+a•2-bt
•100%
,這里我們稱這一函數(shù)關(guān)系為“學(xué)習(xí)曲線”.已知這類學(xué)習(xí)任務(wù)中的某項(xiàng)任務(wù)有如下兩組數(shù)據(jù):t=4,y=50%;t=8,y=80%.
(Ⅰ)試確定該項(xiàng)學(xué)習(xí)任務(wù)的“學(xué)習(xí)曲線”的關(guān)系式f(t);
(Ⅱ)若定義在區(qū)間[x1,x2]上的平均學(xué)習(xí)效率為η=
y2-y1
x2-x1
,問(wèn)這項(xiàng)學(xué)習(xí)任務(wù)從哪一刻開(kāi)始的2個(gè)單位時(shí)間內(nèi)平均學(xué)習(xí)效率最高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年濟(jì)寧質(zhì)檢理)(12分)

已知某類學(xué)習(xí)任務(wù)的掌握程度與學(xué)習(xí)時(shí)間(單位時(shí)間)之間的關(guān)系為

,這里我們稱這一函數(shù)關(guān)系為“學(xué)習(xí)曲線”.已知這類學(xué)習(xí)任務(wù)中的某項(xiàng)任務(wù)有如下兩組數(shù)據(jù):

(1)試確定該項(xiàng)學(xué)習(xí)任務(wù)的“學(xué)習(xí)曲線”的關(guān)系式

(2)若定義在區(qū)間上的平均學(xué)習(xí)效率為,問(wèn)這項(xiàng)學(xué)習(xí)任務(wù)從哪一刻開(kāi)始的2個(gè)單位時(shí)間內(nèi)平均學(xué)習(xí)效率最高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆福建省福州市高二期末理科考試數(shù)學(xué)試卷 題型:填空題

已知某類學(xué)習(xí)任務(wù)的掌握程度與學(xué)習(xí)時(shí)間(單位時(shí)間)之間有如下函數(shù)關(guān)系:

(這里我們稱這一函數(shù)關(guān)系為“學(xué)習(xí)曲線”).

若定義在區(qū)間上的平均學(xué)習(xí)效率為,這項(xiàng)學(xué)習(xí)任務(wù)從在從第個(gè)

單位時(shí)間起的2個(gè)單位時(shí)間內(nèi)的平均學(xué)習(xí)效率最高.則=      

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知某類學(xué)習(xí)任務(wù)的掌握程度y與學(xué)習(xí)時(shí)間t(單位時(shí)間)之間的關(guān)系為y=f(t)=數(shù)學(xué)公式,這里我們稱這一函數(shù)關(guān)系為“學(xué)習(xí)曲線”.已知這類學(xué)習(xí)任務(wù)中的某項(xiàng)任務(wù)有如下兩組數(shù)據(jù):t=4,y=50%;t=8,y=80%.
(Ⅰ)試確定該項(xiàng)學(xué)習(xí)任務(wù)的“學(xué)習(xí)曲線”的關(guān)系式f(t);
(Ⅱ)若定義在區(qū)間[x1,x2]上的平均學(xué)習(xí)效率為數(shù)學(xué)公式,問(wèn)這項(xiàng)學(xué)習(xí)任務(wù)從哪一刻開(kāi)始的2個(gè)單位時(shí)間內(nèi)平均學(xué)習(xí)效率最高.

查看答案和解析>>

同步練習(xí)冊(cè)答案