已知總體方差σ2=
1100
(x12+x22+…+x1002)-400
,則總體平均數(shù)為
±20
±20
分析:根據(jù)方差的另一個(gè)計(jì)算公式:σ2=
1
n
(x12+x22+…+xn2)-
.
x
2,即可求得
.
x
解答:解:∵σ2=
1
100
(x12+x22+…+x1002)-400

.
x
2=400,
.
x
=±20.
故答案為:±20.
點(diǎn)評(píng):本題考查方差的計(jì)算公式的運(yùn)用.一般地設(shè)n個(gè)數(shù)據(jù),x1,x2,…xn的平均數(shù)為
.
x
,則方差σ2=
1
n
(x12+x22+…+xn2)-
.
x
2,它反映了一組數(shù)據(jù)的波動(dòng)大小,方差越大,波動(dòng)性越大,反之也成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知總體的各個(gè)體的值由小到大依次為2,3,4,7,a,b,12,13.7,17.3,20(a>0,b>0),且總體的中位數(shù)為10.5,若總體的方差最小時(shí),則函數(shù)f(x)=ax2+2bx+1的最小值是
-9.5
-9.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知總體的各個(gè)體的值由小到大依次為2,3,3,7,a,b,12,14,18,20,且總體的中位數(shù)為10.5(將一組數(shù)據(jù)按大小依次排列,把處在最中間位置的一個(gè)數(shù)據(jù)或最中間兩個(gè)數(shù)據(jù)的平均數(shù)叫做這組數(shù)據(jù)的中位數(shù)).
(1)求該總體的平均數(shù);
(2)求a的值,使該總體的方差最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知總體的各個(gè)體的值由小到大依次為2,3,3,7,a,b,12,14,18,20,且總體的中位數(shù)為10.5,
(1)求該總體的平均數(shù);
(2)若要使該總體的方差最小,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知總體的各個(gè)體的值由小到大依次為2,3,3,7,a,b,12,14,18,20,且總體的中位數(shù)為10.5,
(1)求該總體的平均數(shù);
(2)若要使該總體的方差最小,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年浙江省溫州市瑞安中學(xué)高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知總體的各個(gè)體的值由小到大依次為2,3,3,7,a,b,12,14,18,20,且總體的中位數(shù)為10.5,
(1)求該總體的平均數(shù);
(2)若要使該總體的方差最小,求a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案