橢圓
x2
4
+
y2
9
=1上的點(diǎn)P到直線2x+y-12=0的最大距離為
 
考點(diǎn):點(diǎn)到直線的距離公式
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)橢圓
x2
4
+
y2
9
=1上的點(diǎn)P(2cosθ,3sinθ),由此利用點(diǎn)到直線的距離公式和三角函數(shù)的性質(zhì)能求出P到直線2x+y-12=0的最大距離.
解答: 解:設(shè)橢圓
x2
4
+
y2
9
=1上的點(diǎn)P(2cosθ,3sinθ),
則P(2cosθ,3sinθ)到直線2x+y-12=0的距離為:
d=
|4cosθ+3sinθ-12|
4+1
=
5
|5sin(θ+α)-12|
5
17
5
5

∴P到直線2x+y-12=0的最大距離為
17
5
5

故答案為:
17
5
5
點(diǎn)評(píng):本題考查動(dòng)點(diǎn)到定直線的距離的最大值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意橢圓的參數(shù)方程和點(diǎn)到直線的距離公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在已知拋物線y=x2上存在兩個(gè)不同的點(diǎn)M、N關(guān)于直線y=kx+
9
2
對(duì)稱,則k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a2=5,a4=9
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{an}的前n項(xiàng)和為Sn,求數(shù)列{
1
Sn
}
的前n項(xiàng)Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
-2x+b
2x+1+a
是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明;
(3)若對(duì)于任意x∈[
1
2
,3]
都有f(kx2)+f(2x-1)>0成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0<m<n,則有下面結(jié)論:
(1)2m<2n;(2)(
1
2
m<(
1
2
n;(3)log 
1
2
m>log 
1
2
n;(4)log2m>log2n.
其中正確的結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三(1)班的一次數(shù)學(xué)測(cè)試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答下列問題:
(1)求全班人數(shù)及分?jǐn)?shù)在[80,90)之間的頻數(shù);
(2)不看莖葉圖中的具體分?jǐn)?shù),僅根據(jù)頻率分布直方圖估計(jì)該班的平均分?jǐn)?shù);
(3)若要從分?jǐn)?shù)在[80,100]之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax3+bx2+cx(a<0)有極小值-8,其導(dǎo)函數(shù)f'(x)的圖象過點(diǎn)A(-2,0),B(
2
3
,0).
(1)求f(x)的解析式;
(2)若方程f(x)=mx恰有3個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍;
(3)若對(duì)x∈[-3,3]都有f(x)≥t2-14t恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以(2,-1)為圓心,4為半徑的圓的方程為( 。
A、(x+2)2+(y-1)2=4
B、(x+2)2+(y+1)2=4
C、(x-2)2+(y+1)2=16
D、(x+2)2+(y-1)2=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線xsinθ+y+3=0的傾斜角的取值范圍是(  )
A、[-
π
4
π
4
]
B、[
π
4
4
]
C、[0,
π
4
]∪(
π
2
,
4
D、[0,
π
4
]∪[
4
,π)

查看答案和解析>>

同步練習(xí)冊(cè)答案