分析 (1)設AE切圓于M,直線x=4與x軸的交點為N,則EM=EB,可得|EA|+|EB|=|AM|=$\sqrt{A{P}^{2}-P{M}^{2}}$=$\sqrt{A{P}^{2}-P{B}^{2}}$=$\sqrt{A{N}^{2}-B{N}^{2}}$=4;
(2)確定E,F均在橢圓$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1上,設直線EF的方程為x=my+1(m≠0),聯立,E,B,F,Q在同一條直線上,|EB|•|FQ|=|BF•|EQ|等價于-y1•$\frac{3}{m}$+y1y2=y2•$\frac{3}{m}$-y1y2,利用韋達定理,即可證明結論.
解答 證明:(1)設AE切圓于M,直線x=4與x軸的交點為N,則EM=EB,
∴|EA|+|EB|=|AM|=$\sqrt{A{P}^{2}-P{M}^{2}}$=$\sqrt{A{P}^{2}-P{B}^{2}}$=$\sqrt{A{N}^{2}-B{N}^{2}}$=4為定值;
(2)同理|FA|+|FB|=4,
∴E,F均在橢圓$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1上,
設直線EF的方程為x=my+1(m≠0),令x=4,yQ=$\frac{3}{m}$,
直線與橢圓方程聯立得(3m2+4)y2+6my-9=0,
設E(x1,y1),F(x2,y2),則y1+y2=-$\frac{6m}{3{m}^{2}+4}$,y1y2=-$\frac{9}{3{m}^{2}+4}$
∵E,B,F,Q在同一條直線上,
∴|EB|•|FQ|=|BF•|EQ|等價于-y1•$\frac{3}{m}$+y1y2=y2•$\frac{3}{m}$-y1y2,
∴2y1y2=(y1+y2)•$\frac{3}{m}$,
代入y1+y2=-$\frac{6m}{3{m}^{2}+4}$,y1y2=-$\frac{9}{3{m}^{2}+4}$成立,
∴|EB|•|FQ|=|BF•|EQ|.
點評 本題考查橢圓方程,考查直線與橢圓的位置關系,考查韋達定理的運用,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | x=-1 | B. | y=-1 | C. | x=-2 | D. | y=-2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | “若a>1,則a2>1”的否命題是“若a>1,則a2≤1” | |
B. | 在△ABC中,“A>B”是“sin2A>sin2B”必要不充分條件 | |
C. | “若tanα$≠\sqrt{3}$,則$α≠\frac{π}{3}$”是真命題 | |
D. | ?x0∈(-∞,0)使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com