【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)若采用樣本估計(jì)總體的方式,試估計(jì)小王的所有微信好友中每日走路步數(shù)超過(guò)5000步的概率;

(2)已知某人一天的走路步數(shù)超過(guò)8000步被系統(tǒng)評(píng)定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?

【答案】(1);(2)答案見解析.

【解析】

試題分析:

(1)由題意可求得滿足題意的頻率為,據(jù)此估計(jì)他的所有微信好友中每日走路步數(shù)超過(guò)5000步的概率為;

(2)計(jì)算可得,故沒(méi)有95%以上的把握認(rèn)為二者有關(guān).

試題解析:

(1)由題知,40人中該日走路步數(shù)超過(guò)5000步的有35人,頻率為,

所以估計(jì)他的所有微信好友中每日走路步數(shù)超過(guò)5000步的概率為

(2)

故沒(méi)有95%以上的把握認(rèn)為二者有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知四棱錐的側(cè)棱長(zhǎng)與底面邊長(zhǎng)都相等,四邊形為正方形,點(diǎn)的中點(diǎn),求異面直線所成角的余弦值.

2)如圖,在長(zhǎng)方體中,分別是的中點(diǎn),求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,且曲線處有相同的切線.

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)求證:上恒成立;

(Ⅲ)當(dāng)時(shí),求方程在區(qū)間內(nèi)實(shí)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中有紅、黃、白色球各1個(gè),每次任取1個(gè),有放回地抽三次,求基本事件的個(gè)數(shù),寫出所有基本事件的全集,并計(jì)算下列事件的概率:

1)三次顏色各不相同;

2)三次顏色不全相同;

3)三次取出的球無(wú)紅色或黃色.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的半徑為3,圓心在軸正半軸上,直線與圓相切.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)的直線與圓交于不同的兩點(diǎn),而且滿足,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)).

1)分別求出曲線和直線的直角坐標(biāo)方程;

2)若點(diǎn)在曲線上,且到直線的距離為1,求滿足這樣條件的點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為

(Ⅰ)求的解析式;

(Ⅱ)當(dāng),求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的對(duì)稱軸方程;

2)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,然后再向左平移個(gè)單位,得到函數(shù)的圖象.若 , 分別是三個(gè)內(nèi)角 , 的對(duì)邊, , ,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公園欲將一塊空地規(guī)劃成如圖所示的區(qū)域,其中在邊長(zhǎng)為20米的正方形內(nèi)種植經(jīng)紅色郁金香,在正方形的剩余部分(即四個(gè)直角三角形內(nèi))種植黃色郁金香.現(xiàn)要在以為邊長(zhǎng)的矩形內(nèi)種植綠色草坪,要求綠色草坪的面積等于黃色郁金香的面積.設(shè),米.

1)求之間的函數(shù)關(guān)系式;

2)求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案