(12分)如圖所示,正方形和矩形所在平面相互垂直,的中點(diǎn).
(I)求證:;
(Ⅱ)若直線與平面成45o角,
求異面直線所成角的余弦值.

(1)  略
(2)  
(I)證明:在矩形中, 
∵ 平面平面,且平面平面
  ∴--------------6分
(Ⅱ)由(I)知:
是直線與平面所成的角,即-----------8分
設(shè)
,連接
的中點(diǎn)  ∴
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,平面PCBM⊥平面ABC,∠PCB=90°,PM∥BC,直線AM與直線PC所成的角為60°,又AC=1,BC=2PM=2,∠ACB="90° "

(1)求證:AC⊥BM;
(2)求二面角M-AB-C的余弦值
(3求P到平面MAB的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=2,BC=a,又PA⊥平面ABCD,PA=4.     
(Ⅰ)若在邊BC上存在一點(diǎn)Q,使PQ⊥QD,求a的取值范圍;
(Ⅱ)當(dāng)邊BC上存在唯一點(diǎn)Q,使PQ⊥QD時(shí),求二面角A-PD-Q的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,在三棱錐中,,,,, 點(diǎn),分別在棱上,且

(I)求證:平面;
(II)當(dāng)的中點(diǎn)時(shí),求與平面所成的角的大;
(III)是否存在點(diǎn)使得二面角為直二面角?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分15分)
如圖5,在底面為直角梯形的四棱錐中,,,,

(1)求證:
(2)求直線;
(3)設(shè)點(diǎn)E在棱PC上,,若,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
如圖,四棱錐的底面為菱形,平面,,、分別為的中點(diǎn)。
(I)求證:平面
  (Ⅱ)求三棱錐的體積;
(Ⅲ)求平面與平面所成的銳二面角大小的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC, △PAD是等邊三角形,已知BD=2AD=8,AB=2DC=(1)設(shè)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD(2)求四棱錐P-ABCD的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對(duì)角線BD把△ABD折起,使A移到點(diǎn),且在平面BCD上的射影O恰好在CD上.
(1)、求證:;
(2)、求證:平面平面
(3)、求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題8分)
如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直. EF//AC,AB=,CE=EF=1,.
(1)求證:AF//平面BDE;
(2)求異面直線AB與DE所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案