10.平面向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(1,y),$\overrightarrow{c}$=(2,-4),如果 $\overrightarrow$∥$\overrightarrow{c}$,且$\overrightarrow{a}$⊥($\overrightarrow$-$\overrightarrow{c}$),那么實數(shù)x,y的值分別是( 。
A.2,-2B.-2,-2C.$\frac{1}{2}$,2D.$\frac{1}{2}$,$\frac{1}{2}$

分析 利用向量坐標運算法則先求出$\overrightarrow-\overrightarrow{c}$=(-1,y+4),再由$\overrightarrow$∥$\overrightarrow{c}$,且$\overrightarrow{a}$⊥($\overrightarrow$-$\overrightarrow{c}$),利用向量平行和向量垂直的性質(zhì)列出方程組,能求出實數(shù)x,y的值.

解答 解:∵平面向量$\overrightarrow{a}$=(x,1),$\overrightarrow$=(1,y),$\overrightarrow{c}$=(2,-4),
∴$\overrightarrow-\overrightarrow{c}$=(-1,y+4),
∵$\overrightarrow$∥$\overrightarrow{c}$,且$\overrightarrow{a}$⊥($\overrightarrow$-$\overrightarrow{c}$),
∴$\left\{\begin{array}{l}{\frac{1}{2}=\frac{y}{-4}}\\{-x+y+4=0}\end{array}\right.$,解得x=2,y=-2,
∴實數(shù)x,y的值分別2,-2.
故選:A.

點評 本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意向量坐標運算法則、向量平行和向量垂直的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.根據(jù)如圖所示的偽代碼可知,輸出的結(jié)果為70.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.利用夾逼準則求極限$\underset{lim}{n→∞}$$\frac{{2}^{n}}{n!}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)f(x)=$\left\{\begin{array}{l}{x+2,x≥0}\\{2,x<0}\end{array}\right.$,則f[f(-3)]=( 。
A.4B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某幾何體的三視圖如圖所示,則該幾何體的體積是$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知過點P(1,0)的直線l交圓O:x2+y2=1于A,B兩點,$|AB|=\sqrt{2}$,則直線l的方程為x-y-1=0或x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若某市6所中學(xué)參加中學(xué)生合唱比賽的得分用莖葉圖表示如圖,其中莖為十位數(shù),葉為個位數(shù),則這組數(shù)據(jù)的方差是$\frac{13}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.雙曲線$\frac{x^2}{4}-\frac{y^2}{12}=1$的焦點到漸近線的距離為( 。
A.$2\sqrt{3}$B.2C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若a>0,且a≠1,則“函數(shù)y=ax在R上是減函數(shù)”是“函數(shù)y=(2-a)x3在R上是增函數(shù)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案