【題目】已知函數(shù)的導函數(shù),則過曲線上一點的切線方程為  

A. B.

C. D.

【答案】A

【解析】

先根據(jù)af′()求出a的值,再根據(jù)題意求出b的值和切線的斜率,再寫出切線的方程.

(1)f(x)=3x+cos2x+sin2x

f′(x)=3-2sin2x+2cos2x

af′()=3-2sin+2cos=1.

yx3y′=3x2,

P點為切點時,切線的斜率k=3a2=3×12=3.

ba3,則b=1,所以切點P的坐標為(1,1).

故過曲線yx3上的點P的切線方程為y-1=3(x-1),

3xy-2=0.

P點不是切點時,設切點為(x0,x),

∴切線方程為yx=3x (xx0),

P(ab)在曲線yx3上,且a=1,b=1.

1-x=3x (1-x0),

2x-3x+1=0,2x-2xx+1=0,

(x0-1)2(2x0+1)=0,∴切點為,

∴此時的切線方程為y

綜上,滿足題意的切線方程為3xy-2=03x-4y+1=0

故答案為:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在正方形中,的中點,點在線段上,且.若將 分別沿折起,使兩點重合于點,如圖2.

圖1 圖2

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】輪船A從某港口O要將一些物品送到正航行的輪船B上,在輪船A出發(fā)時,輪船B位于港口O北偏西30°且與O相距20海里的P處,并正以15海里/時的航速沿正東方向勻速行駛,假設輪船A沿直線方向以v海里/時的航速勻速行駛,經(jīng)過t小時與輪船B相遇,

1)若使相遇時輪船A航距最短,則輪船A的航行速度的大小應為多少?

2)假設輪船B的航行速度為30海里/時,輪船A的最高航速只能達到30海里/時,則輪船A以多大速度及沿什么航行方向行駛才能在最短時間內(nèi)與輪船B相遇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知fx)是R上的奇函數(shù),且x>0時,fx=x2-4x+3

求:(1fx)的解析式.

2)已知t0,求函數(shù)fx)在區(qū)間[t,t+1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知以為首項的數(shù)列滿足:.

(1)當時,且,寫出、;

(2)若數(shù)列是公差為-1的等差數(shù)列,求的取值范圍;

(3)記的前項和,當時,

①給定常數(shù),求的最小值;

②對于數(shù)列,,…,,當取到最小值時,是否唯一存在滿足的數(shù)列?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】江蘇省淮陰中學科技興趣小組在計算機上模擬航天器變軌返回試驗.設計方案如圖,航天器運行(按順時針方向)的軌跡方程為,變軌(即航天器運行軌跡由橢圓變?yōu)閽佄锞)后返回的軌跡是以軸為對稱軸、為頂點的拋物線的實線部分,降落點為.觀測點同時跟蹤航天器,試問:當航天器在軸上方時,觀測點,測得離航天器的距離分別為多少時,應向航天器發(fā)出變軌指令?(變軌指令發(fā)出時航天器立即變軌)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】狄利克雷函數(shù)是高等數(shù)學中的一個典型函數(shù),若則稱為狄利克雷函數(shù).對于狄利克雷函數(shù),給出下面4個命題:①對任意都有;②對任意,都有;③對任意,都有 ;④對任意,都有.其中所有真命題的序號是

A. ①④ B. ②③ C. ①②③ D. ①③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD和矩形ABEF中,,,矩形ABEF可沿AB任意翻折.

1)求證:當點F,A,D不共線時,線段MN總平行于平面ADF.

2)“不管怎樣翻折矩形ABEF,線段MN總與線段FD平行”這個結論正確嗎?如果正確,請證明;如果不正確,請說明能否改變個別已知條件使上述結論成立,并給出理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某便利店計劃每天購進某品牌鮮奶若干件,便利店每銷售一瓶鮮奶可獲利元;若供大于求,剩余鮮奶全部退回,但每瓶鮮奶虧損元;若供不應求,則便利店可從外調(diào)劑,此時每瓶調(diào)劑品可獲利.

(1)若便利店一天購進鮮奶瓶,求當天的利潤單位:元關于當天鮮奶需求量單位:瓶,的函數(shù)解析式;

(2)便利店記錄了天該鮮奶的日需求量單位:瓶,整理得下表:

日需求量

頻數(shù)

若便利店一天購進瓶該鮮奶,以天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天利潤在區(qū)間內(nèi)的概率.

查看答案和解析>>

同步練習冊答案