【題目】某玩具所需成本費用為P元,且P=1 000+5x+x2,而每套售出的價格為Q元,其中Q(x)=a+ (a,b∈R),
(1)問:玩具廠生產(chǎn)多少套時,使得每套所需成本費用最少?
(2)若生產(chǎn)出的玩具能全部售出,且當產(chǎn)量為150套時利潤最大,此時每套價格為30元,求a,b的值.(利潤=銷售收入-成本).
【答案】(1)該玩具廠生產(chǎn)100套時每套所需成本最少.(2)a=25,b=30.
【解析】
(1)先建立每套所需成本費用函數(shù)關系式,再根據(jù)基本不等式求最值,(2)先根據(jù)利潤=銷售收入-成本建立利潤函數(shù)關系式,再根據(jù)二次函數(shù)性質確定開口方向、對稱軸位置以及最大值取法,解方程與不等式組可得a,b的值.
解:(1)每套玩具所需成本費用為=
=x++5≥2+5=25,
當x=,即x=100時等號成立,
故該玩具廠生產(chǎn)100套時每套所需成本最少.
(2)設售出利潤為w,則w=x·Q(x)-P
=x-
=x2+(a-5)x-1 000,
由題意得解得a=25,b=30.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=(m2-m-1)·是冪函數(shù),對任意x1,x2∈(0,+∞)且x1≠x2,滿足,若a,b∈R且a+b>0,ab<0,則f(a)+f(b)的值( )
A. 恒大于0 B. 恒小于0
C. 等于0 D. 無法判斷
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中xOy,直線C1的參數(shù)方程為 (t是參數(shù)).在以坐標原點為極點,x軸非負半軸為極軸的極坐標系中,曲線C2的極坐標方程為ρ=sinθ﹣cosθ(θ是參數(shù)).
(Ⅰ)將曲線C2的極坐標方程化為直角坐標方程,并判斷曲線C2所表示的曲線;
(Ⅱ)若M為曲線C2上的一個動點,求點M到直線C1的距離的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在50和350之間所有末位數(shù)是1的整數(shù)之和是( )
A. 5880 B. 5539 C. 5208 D. 4877
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù) f(x)=,其中 c>a>0,c>b>0.若 a,b,c 是△ABC 的三條邊長,給出下列命題:
①對于x∈(-∞,1),都有 f(x)>0;
②存在 x>0,使,,不能構成一個三角形的三邊長;
③若△ABC 為鈍角三角形,則存在 x∈(1,2),使 f(x)=0.
則其中所有正確結論的序號是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ( m 為常數(shù)).
(Ⅰ)若曲線 y f x 在點 0, f 0 處的切線斜率為 1 ,求實數(shù) m 的值.
(Ⅱ)求函數(shù) f x 的極值.
(Ⅲ)證明:當 x 0 時,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) (m>0)的最大值為2.
(1)求函數(shù),f(x)在[0,π]上的單調遞減區(qū)間;
(2)△ABC中,a,b,c分別是角A,B,C所對的邊,C=60°,c=3,且 ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2022年,將在北京和張家口兩個城市舉辦第24屆冬奧會.某中學為了普及奧運會知識和提高學生參加體育運動的積極性,舉行了一次奧運知識競賽.隨機抽取了30名學生的成績,繪成如圖所示的莖葉圖,若規(guī)定成績在75分以上(包括75分)的學生定義為甲組,成績在75分以下(不包括75分)定義為乙組.
(1)在這30名學生中,甲組學生中有男生7人,乙組學生中有女生12人,試問有沒有90%的把握認為成績分在甲組或乙組與性別有關;
(2)①如果用分層抽樣的方法從甲組和乙組中抽取5人,再從這5人中隨機抽取2人,那么至少有1人在甲組的概率是多少?
②用樣本估計總體,把頻率作為概率,若從該地區(qū)所有的中學(人數(shù)很多)中隨機選取3人,用表示所選3人中甲組的人數(shù),試寫出的分布列,并求出的數(shù)學期望.
附: ;其中
獨立性檢驗臨界表:
0.100 | 0.050 | 0.010 | |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com