(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
(Ⅰ) ().  (Ⅱ) S(a)的值域?yàn)?0,) (Ⅲ)S(a)}
(1)將y=代入橢圓方程,得化簡,得b2x4a2b2x2+a2=0
由條件,有Δ=a4b4–4a2b2=0,得ab=2解得x=x=–(舍去)
P的坐標(biāo)為().
(2)∵在△ABP中,|AB|=2,高為,∴
ab>0,b=a,即a,得0<<1
于是0<Sa)<,故△ABP的面積函數(shù)S(a)的值域?yàn)?0,)
(3)g(a)=c2=a2b2=a2解不等式g(a)≥S(a),即a2
整理,得a8–10a4+24≥0,即(a4–4)(a4–6)≥0
解得a(舍去)或a.故f(a)=min{g(a), S(a)}
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)x,y∈R,i,j為直角坐標(biāo)平面內(nèi)x,y軸正方向上的單位向量,若向量,bxi+(y-2)j,且|a|+|b|=8.
(1)求點(diǎn)Mx,y)的軌跡C的方程;
(2)過點(diǎn)(0,3)作直線l與曲線C交于AB兩點(diǎn),設(shè)是否存在這樣的直線l,使得四邊形OAPB為矩形?若存在,求出直線l的方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓方程,過B(-1,0)的直線l交隨圓于C、D兩點(diǎn),交直線x=-4于E點(diǎn),B、E分的比分λ1、λ2.求證:λ1+λ2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,從點(diǎn)發(fā)出的光線沿平行于拋物線的軸的方向射向此拋物線上的點(diǎn)P,反射后經(jīng)焦點(diǎn)F又射向拋物線上的點(diǎn)Q,再反射后沿平行于拋物線的軸的方向射向直線再反射后又射回點(diǎn)M,則   x0=          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知以為圓心、半徑為的一個圓內(nèi)有一個定點(diǎn),如果圓過定點(diǎn)且與圓相切,求圓心的軌跡。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線中心在原點(diǎn),一個頂點(diǎn)的坐標(biāo)為,且焦距與虛軸長之比為,則雙曲線的標(biāo)準(zhǔn)方程是____________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知的三邊長成等差數(shù)列,若點(diǎn)的坐標(biāo)分別為.(1)求頂點(diǎn)的軌跡的方程;(2)若線段的延長線交軌跡于點(diǎn),當(dāng)時求線段的垂直平分線軸交點(diǎn)的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,有一正方形鋼板ABCD缺損一角(圖中的陰影部分),邊緣線OC是以直線AD為對稱軸,以線段AD的中點(diǎn)O為頂點(diǎn)的拋物線的一部分.工人師傅要將缺損一角切割下來,使剩余的部分成為一個直角梯形.若正方形的邊長為2米,問如何畫切割線EF,可使剩余的直角梯形的面積最大?并求其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



查看答案和解析>>

同步練習(xí)冊答案