精英家教網 > 高中數學 > 題目詳情
1.曲線f(x)=sin(4x+$\frac{π}{3}$)+ax在x=0處的切線與直線x+3y=1垂直,則實數a的值為(  )
A.1B.2C.-3D.$\frac{1}{2}$

分析 求出原函數的導函數,得到曲線f(x)=sin(4x+$\frac{π}{3}$)+ax在x=0處的切線的導數,由相互垂直的兩直線的斜率的關系求得實數a的值.

解答 解:由f(x)=sin(4x+$\frac{π}{3}$)+ax,得:f′(x)=4cos(4x+$\frac{π}{3}$)+a,
∴f′(0)=2+a,
即曲線f(x)=sin(4x+$\frac{π}{3}$)+ax在x=0處的切線的斜率為2+a.
又曲線f(x)=sin(4x+$\frac{π}{3}$)+ax在x=0處的切線與直線x+3y=1垂直,
∴2+a=3,解得a=1.
故選:A.

點評 本題考查了利用導數研究曲線上某點處的切線方程,考查了過曲線上某點的切線的斜率的求法,是中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

11.已知函數f(x)=lnx+2x.
(1)用定義證明函數f(x)在(0,+∞)上是增函數;
(2)設g(x)=ln$\frac{x+2}{x-2}$,若對任意x1∈(0,1),x2∈(k,k+1)(k∈N),使f(x1)<g(x2),求實數k的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)與雙曲線$\frac{x^2}{2}-{y^2}$=1有共同的焦點,拋物線x2=4y的焦點為橢圓C的一個頂點.
(1)求橢圓C的標準方程;
(2)若點M(x0,y0)在橢圓C上,則點$N(\frac{x_0}{a},\frac{y_0})$稱為點M的一個“橢點”.直線l與橢圓C交于不同的兩點A,B,且A,B兩點的“橢點”分別為P,Q.
(i)若直線l的方程為y=x,求P,Q兩點的坐標;
(ii)若以PQ為直徑的圓經過坐標原點O,那么△AOB的面積是否為定值?若是定值,試求出該定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.設△ABC的內角,A,B,C對邊的邊長分別為a,b,c,且acosB-bcosA=$\frac{1}{2}$c.
(1)求$\frac{tanA}{tanB}$的值;
(2)求tan(A-B)的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,以原點O為圓心,以橢圓E的半長軸長為半徑的圓與直線x-y+2$\sqrt{2}$=0相切.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設點A,B,C在橢圓E上運動,A與B關于原點對稱,且|AC|=|CB|,當△ABC的面積最小時,求直線AB的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),F1(-c,0),F2(c,0)為橢圓的兩個焦點,M為橢圓上任意一點,且|MF1|+|MF2|=4,過橢圓焦點且垂直于長軸的弦長為3.
(1)求橢圓E的標準方程;
(2)是否存在以原點為圓心的圓,使該圓的任意一條切線與橢圓E恒有兩個不同交點A,B,且$\overrightarrow{OA}$丄$\overrightarrow{OB}$,若存在,請求出該圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.某同學在籃球場上進行投籃訓練,先投“2分的籃”2次,每次投中的概率為$\frac{4}{5}$,每投中一次得2分,不中得0分;再投“3分的籃”1次,每次投中的概率為$\frac{2}{3}$,投中得3分,不中得0分,該同學每次投籃的結果相互獨立,假設該同學要完成以上三次投籃.
(1)求該同學恰好有2次投中的概率;
(2)求該同學所得分X的分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.已知數列{bn}是首項為-$\frac{3}{4}$,公比為$\frac{1}{2}$的等比數列,數列{an}滿足an+1+bn=n-1,記Sn、Tn分別為數列{an}、{bn}的前n項和,若數列{$\frac{{S}_{n}}{n}$+λ•$\frac{{T}_{n}}{n}$}為等差數列,則λ=2.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知a,b>0,且滿足a+4b=1,$\frac{1}{a}$+$\frac{1}$的最小值為n,則二項式(x-$\frac{1}{{2\sqrt{x}}}$)n的展開式的常數項為( 。
A.$\frac{8}{9}$B.-$\frac{6}{7}$C.$\frac{21}{16}$D.$\frac{22}{31}$

查看答案和解析>>

同步練習冊答案