分析 分k=0和k≠0分類求解,當k≠0時,需$\left\{\begin{array}{l}{k<0}\\{(-2)^{2}-4k(k-1)≤0}\end{array}\right.$,求解不等式組得答案.
解答 解:當k=0時,原不等式化為-2x-1≤0,即x≥-$\frac{1}{2}$,不合題意;
當k≠0時,要使不等式kx2-2x+k-1≤0對一切實數(shù)x恒成立,則
$\left\{\begin{array}{l}{k<0}\\{(-2)^{2}-4k(k-1)≤0}\end{array}\right.$,解得:k≤$\frac{1-\sqrt{5}}{2}$.
綜上,實數(shù)k的取值范圍是(-∞,$\frac{1-\sqrt{5}}{2}$].
點評 本題考查恒成立問題的求解方法,考查了分類討論的數(shù)學思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3∈{y|y=x2+π,x∈R} | B. | {(a,b)}={(b,a)} | ||
C. | {(x,y)|x2-y2=1}⊆{(x,y)|(x2-y2)2=1} | D. | {x∈R|x2-2=0}=∅ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | ||
C. | 既是奇函數(shù)又是偶函數(shù) | D. | 既不是奇函數(shù)又不是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com