【題目】如圖,四棱錐P﹣ABCD的底面ABCD為直角梯形,BC//AD,且AD=2AB=2BC=2,∠BAD=90°,△PAD為等邊三角形,平面ABCD⊥平面PAD;點(diǎn)E、M分別為PD、PC的中點(diǎn).
(1)證明:CE//平面PAB;
(2)求三棱錐M﹣BAD的體積;
(3)求直線DM與平面ABM所成角的正弦值.
【答案】(1)證明見(jiàn)解析;(2) ;(3).
【解析】
(1)設(shè)的中點(diǎn)為,連接,利用三角形的中位線證得,而,由此證得,由此證得四邊形是平行四邊形,進(jìn)而證得,從而證得平面.
(2)根據(jù)等邊三角形的性質(zhì),結(jié)合面面垂直的性質(zhì)定理,求得到平面的距離,而是的中點(diǎn),故到平面的距離是到平面的距離的一半.由此求得到平面的距離,進(jìn)而求得三棱錐的體積.
(3)建立空間直角坐標(biāo)系,利用直線的方向向量和平面的法向量,計(jì)算出線面角的正弦值.
(1)證明:設(shè)PA的中點(diǎn)為N,連結(jié)EN,BN,
∵E為PD中點(diǎn),∴EN為△PAD的中位線,
∴EN//AD,且ENAD,
在梯形ABCD中,BC//AD,且BCAD,
∴BC//EN,且BC=EN,∴四邊形ENBC是平行四邊形,∴CE//BN,
∵BN平面PAB,CE平面PAB,∴CE//平面PAB.
(2)解:∵四棱錐P﹣ABCD的底面ABCD為直角梯形,BC∥AD,且AD=2AB=2BC=2,∠BAD=90°,
∴1,
∵△PAD為等邊三角形,平面ABCD⊥平面PAD,點(diǎn)M是PC的中點(diǎn).
設(shè)AD的中點(diǎn)為O,則PA=PD,∴PO⊥AD,
∴M到平面ABD的距離d,
∴三棱錐M﹣BAD的體積V.
(3)∵平面PAD⊥平面ABCD,交線為AD,PO平面PAD,
∴PO⊥平面ABCD,
又∵CO//BA,∠BAD=90°,∴CO⊥AD,
∴OA,OC,OP,OC兩兩垂直,
以O為原點(diǎn),OA,OC,OP,OC所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,
則A(1,0,0),B(1,0,1),M(0,,),D(﹣1,0,0),
(0,0,1),(﹣1,,),
設(shè)平面ABM的法向量(x,y,z),
則,取x,得(),(1,,),
cos,
∴直線DM與平面ABM所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在上至少存在兩個(gè)不同的,滿足,且函數(shù)在上具有單調(diào)性,和分別為函數(shù)圖象的一個(gè)對(duì)稱中心和一條對(duì)稱軸,則下列命題中正確的是( )
A.函數(shù)圖象的兩條相鄰對(duì)稱軸之間的距離為
B.函數(shù)圖象關(guān)于直線對(duì)稱
C.函數(shù)圖象關(guān)于點(diǎn)對(duì)稱
D.函數(shù)在上是單調(diào)遞減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】造紙術(shù)是我國(guó)古代四大發(fā)明之一.紙張的規(guī)格是指紙張制成后,經(jīng)過(guò)修整切邊,裁成一定的尺寸.現(xiàn)在我國(guó)采用國(guó)際標(biāo)準(zhǔn),規(guī)定以、、…、;、、…、等標(biāo)記來(lái)表示紙張的幅面規(guī)格.復(fù)印紙幅面規(guī)格只采用系列和系列,其中系列的幅面規(guī)格為:①規(guī)格的紙張的幅寬(以表示)和長(zhǎng)度(以表示)的比例關(guān)系為;②將紙張沿長(zhǎng)度方向?qū)﹂_(kāi)成兩等分,便成為規(guī)格.紙張沿長(zhǎng)度方向?qū)﹂_(kāi)成兩等分,便成為規(guī)格,…,如此對(duì)開(kāi)至規(guī)格.現(xiàn)有、、、…、紙各一張.若紙的面積為,則這9張紙的面積之和等于______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是兩條異面直線,直線與都垂直,則下列說(shuō)法正確的是( )
A. 若平面,則
B. 若平面,則,
C. 存在平面,使得,,
D. 存在平面,使得,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù))在上有兩個(gè)零點(diǎn),則的范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,,是的中點(diǎn),.
(Ⅰ)求證:平面;
(Ⅱ)異面直線和所成角的余弦值為,求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱柱的主視圖和俯視圖如圖所示(圖中一格為單位正方形),D、D1分別為棱AC和A1C1的中點(diǎn).
(1)求側(cè)(左)視圖的面積,并證明平面A1ACC1⊥平面B1BDD1
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面坐標(biāo)系中xOy中,已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的參數(shù)方程為(為參數(shù)).以O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系.
(1)求曲線C的普通方程和直線l的極坐標(biāo)方程;
(2)設(shè)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com