已知:f(x)=-sin2x+sinx+a
(Ⅰ)當(dāng)f(x)=0有實(shí)數(shù)解時(shí),求實(shí)數(shù)a的取值范圍;
(Ⅱ)若x∈R恒有數(shù)學(xué)公式成立,求實(shí)數(shù)a的取值范圍.

解:(1)因?yàn)閒(x)=0,即,a的最大值等于=2,
a的最小值等于-,所以,
(2)f(x)=-sin2x+sinx+a=,∴,
又∵,∴,∴3≤a≤4.
所以,實(shí)數(shù)a的取值范圍是[3,4].
分析:(1) 利用二次函數(shù)的性質(zhì)及正弦函數(shù)的值域求出a的最大值和a的最小值,即得實(shí)數(shù)a的取值范圍.
(2)f(x)配方后結(jié)合正弦函數(shù)的值域,求出,再根據(jù)
得到,從而得到實(shí)數(shù)a的取值范圍.
點(diǎn)評(píng):本題考查三角函數(shù)的最值,函數(shù)的恒成立問(wèn)題,以及正弦函數(shù)的有界性,得到 是解題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,在定義域x∈[-2,2]上表示的曲線(xiàn)過(guò)原點(diǎn),且在x=±1處的切線(xiàn)斜率均為-1.有以下命題:①f(x)是奇函數(shù);②若f(x)在[s,t]內(nèi)遞減,則|t-s|的最大值為4;③f(x)的最大值為M,最小值為m,則M+m=0.④若對(duì)?x∈[-2,2],k≤f'(x)恒成立,則k的最大值為2.其中正確命題的個(gè)數(shù)有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=exsinx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)如果對(duì)于任意的x∈[0,
π
2
],f(x)≥kx總成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)函數(shù)F(x)=f(x)+excosx,x∈[-
2011π
2
,
2013π
2
].過(guò)點(diǎn)M(
π-1
2
,0
)作函數(shù)F(x)圖象的所有切線(xiàn),令各切點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列{xn},求數(shù)列{xn}的所有項(xiàng)之和S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-a(x-1),x∈R,其中a為實(shí)數(shù).
(1)若實(shí)數(shù)a>0,求函數(shù)f(x)在(0,+∞)上的極值.
(2)記函數(shù)g(x)f(2x),設(shè)函數(shù)y=g(x)的圖象C與y軸交于P點(diǎn),曲線(xiàn)C在P點(diǎn)處的切線(xiàn)與兩坐標(biāo)軸所圍成的圖形的面積為S(a),當(dāng)a>1時(shí),求S(a)的最小值;
(3)當(dāng)x∈(0,+∞)時(shí),不等式f(x)+f′(x)+x3-2x2≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a
2x
+xlnx
,g(x)=x3-x2-x-1.
(1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求滿(mǎn)足該不等式的最大整數(shù)M;
(2)如果對(duì)任意的s,t∈[
1
3
,2],都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•惠州一模)已知函數(shù)f(x)=ax2+bx+1在x=3處的切線(xiàn)方程為y=5x-8.
(1)求函數(shù)f(x)的解析式;
(2)若關(guān)于x的方程f(x)=kex恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)k的值;
(3)數(shù)列{an}滿(mǎn)足2a1=f(2),an+1=f(an),n∈N*,求S=
1
a1
+
1
a2
+
1
a3
+…+
1
a2013
的整數(shù)部分.

查看答案和解析>>

同步練習(xí)冊(cè)答案