【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,且投資1萬元時的收益為萬元,投資股票等風險型產(chǎn)品的收益與投資額的算術平方根成正比,且投資1萬元時的收益為0.5萬元,
(1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬元?
【答案】(1);(2)投資債券等穩(wěn)健型產(chǎn)品為萬元,投資股票等風險型產(chǎn)品為萬元,投資收益最大為3萬元.
【解析】
(1)投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風險型產(chǎn)品的收益與投資額的算術平方根成正比,用待定系數(shù)法求這兩種產(chǎn)品的收益和投資的函數(shù)關系;
(2)由(1)的結論,設投資股票等風險型產(chǎn)品為萬元,則投資債券等穩(wěn)健型產(chǎn)品為萬元,這時可構造出一個關于收益的函數(shù),然后利用求函數(shù)最大值的方法進行求解.
(1)依題意設,
,
;
(2)設投資股票等風險型產(chǎn)品為萬元,
則投資債券等穩(wěn)健型產(chǎn)品為萬元,
,
當萬元時,收益最大萬元,
20萬元資金,投資債券等穩(wěn)健型產(chǎn)品為萬元,
投資股票等風險型產(chǎn)品為萬元,投資收益最大為3萬元.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)f(x)的最小正周期和單調遞減區(qū)間;
(2)求函數(shù)f(x)的最大值及取得最大值時x的取值集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sin2x-2sin2x-a.
①若f(x)=0在x∈R上有解,則a的取值范圍是______;
②若x1,x2是函數(shù)y=f(x)在[0,]內的兩個零點,則sin(x1+x2)=______
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求的最小正周期;
(2)當時,
(ⅰ)求函數(shù)的單調遞減區(qū)間;
(ⅱ)求函數(shù)的最大值最小值,并分別求出使該函數(shù)取得最大值最小值時的自變量的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點在橢圓: 上, 是橢圓的一個焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓C上不與點重合的兩點, 關于原點O對稱,直線, 分別交軸于, 兩點.求證:以為直徑的圓被直線截得的弦長是定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:(x-3)2+(y-4)2=4.
(Ⅰ)過原點O(0,0)作圓C的切線,切點分別為H、K,求直線HK的方程;
(Ⅱ)設定點M(-3,8),動點N在圓C上運動,以CM,CN為領邊作平行四邊形MCNP,求點P的軌跡方程;
(Ⅲ)平面上有兩點A(1,0),B(-1,0),點P是圓C上的動點,求|AP|2+|BP|2的最小值;
(Ⅳ)若Q是x軸上的動點,QR,QS分別切圓C于R,S兩點.試問:直線RS是否恒過定點?若是,求出定點坐標,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)證明:在上單調遞增.
(2)設,函數(shù),如果總存在,對任意,都成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com