20.函數(shù)y=$\sqrt{lo{g}_{0.5}(3x-2)}$的定義域是( 。
A.[1,+∞)B.(1,+∞)C.(0,1]D.($\frac{2}{3}$,1]

分析 根據(jù)函數(shù)成立的條件即可求函數(shù)的定義域.

解答 解:要使函數(shù)有意義,則log0.5(3x-2)≥0,
即0<3x-2≤1,得$\frac{2}{3}$<x≤1,
即函數(shù)的定義域為($\frac{2}{3}$,1],
故選:D

點評 本題主要考查函數(shù)的定義域的求解,根據(jù)根式函數(shù)以及對數(shù)函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知正方形ABCD邊長為2,E為AB邊上一點,則$\overrightarrow{ED}$•$\overrightarrow{EC}$的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-a(x-1),g(x)=ex,其中e為自然對數(shù)的底數(shù).
(1)當a=1時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)求函數(shù)y=f(x)在區(qū)間[1,e]上的值域;
(3)若a>0,過原點分別作曲線y=f(x)、y=g(x)的切線l1、l2,且兩切線的斜率互為倒數(shù),求證:$\frac{e-1}{e}<a<\frac{{{e^2}-1}}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)等比數(shù)列{an}的公比q=2,前n項和為Sn,則$\frac{{S}_{4}}{{a}_{2}}$的值為( 。
A.$\frac{15}{4}$B.$\frac{15}{2}$C.$\frac{7}{4}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓C:(x-4)2+(y-3)2=9,若P(x,y)是圓C上一動點,則x的取值范圍是1≤x≤7;$\frac{y}{x}$的最大值是$\frac{24}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)$f(x)=\left\{\begin{array}{l}{(2a-1)^x},(x≤1)\\(5-a)x+a,(x>1)\end{array}\right.$在(-∞,+∞)上是增函數(shù),則實數(shù)a的取值范圍是( 。
A.1<a<3B.1<a≤3C.$\frac{1}{2}$<a<5D.$\frac{1}{2}$<a≤5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)$y=\frac{ln(2x-3)}{x-2}$的定義域是( 。
A.$[{\frac{3}{2},+∞})$B.$({\frac{3}{2},2})∪({2,+∞})$C.$[{\frac{3}{2},2})∪({2,+∞})$D.(-∞,2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,定義在[-2,2]的偶函數(shù)f(x)的圖象如圖所示,則方程f(f(x))=0的實根個數(shù)為( 。
A.3B.4C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知圓P的半徑等于橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1的長軸長,圓心是拋物線y2=4$\sqrt{2}$x的焦點,經(jīng)過點M(-$\sqrt{2}$,1)的直線1將圓P分成兩段弧,則劣弧長度的最小值為( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.D.

查看答案和解析>>

同步練習冊答案