已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013011315240566771749/SYS201301131525062146817972_ST.files/image001.png">的函數(shù)同時(shí)滿(mǎn)足:
①對(duì)于任意的,總有; ②;
③若,則有成立。
求的值;
求的最大值;
若對(duì)于任意,總有恒成立,求實(shí)數(shù)的取值范圍。
;的最大值為;。
【解析】
試題分析:(1)對(duì)于條件③,令,得,又由條件①知,所以
設(shè),則
即,故在上是單調(diào)遞增的,從而的最大值為
在上是增函數(shù),令
函數(shù)在上單調(diào)遞增,所以當(dāng)時(shí),
要使恒成立,必有 所以
考點(diǎn):本題考查函數(shù)奇偶性和單調(diào)性。
點(diǎn)評(píng):本題主要是對(duì)抽象函數(shù)的考查,在做關(guān)于抽象函數(shù)的題目時(shí),常用到的數(shù)學(xué)思想是賦值法,比如此題中求f(0)的值。對(duì)于恒成立問(wèn)題:若恒成立,只需;若恒成立,只需。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
x |
f(x2)-f(x1) |
x2-x1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3+
| ||
2 |
3+
| ||
2 |
3+
| ||
2 |
3+
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
x |
f(x2)-f(x1) |
x2-x1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省豫東、豫北十所名校高三測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx +b,使得對(duì)公共定義域內(nèi)的任意實(shí)數(shù)均滿(mǎn)足g(x)≤f(x)≤kx+b恒成立,其中等號(hào)在公共點(diǎn)處成立,則稱(chēng)直線y=kx +b為曲線f(x)與g(x)的“左同旁切線”.已知
(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(是函數(shù) f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得.請(qǐng)結(jié)合(I)中的結(jié)論證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com