10.已知△ABC中,A=30°,C=105°,b=4,則a=2$\sqrt{2}$.

分析 由已知可先求B,然后結(jié)合正弦定理$\frac{a}{sinA}=\frac{sinB}$可求a的值.

解答 解:∵A=30°,C=105°,
∴B=45°
∵b=4,由正弦定理$\frac{a}{sinA}=\frac{sinB}$,可得a=$\frac{bsinA}{sinB}$=$\frac{4×\frac{1}{2}}{\frac{\sqrt{2}}{2}}$=2$\sqrt{2}$.
故答案為:2$\sqrt{2}$.

點評 本題主要考查了正弦定理的簡單應用,屬于基礎(chǔ)試題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}滿足an+1=3an+2(n∈N*),且a1=2.
(1)求證:數(shù)列{an+1}是等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如圖所示,過正方體ABCD-A1B1C1D1的頂點A作直線l,使l與棱AB,AD,AA1所成的角都相等,這樣的直線l可以作4條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知tanθ=-$\frac{5}{12}$,θ∈($\frac{3π}{2}$,2π),則cos(θ+$\frac{π}{4}$)=( 。
A.$\frac{{5\sqrt{2}}}{13}$B.$\frac{{7\sqrt{2}}}{13}$C.$\frac{{17\sqrt{2}}}{26}$D.$\frac{{7\sqrt{2}}}{26}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)y=x3-2x2+x+3,x∈[-1,2],求此函數(shù)的
(1)單調(diào)區(qū)間;
(2)值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若曲線y=2x-x3在點P處的切線的斜率是-1,則P的橫坐標為±1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.函數(shù)f(x)=$\frac{1}{2}{x^2}+{e^x}-x{e^x}$,x∈[-2,+∞)的單調(diào)減調(diào)區(qū)間是[-2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若半徑為2cm的扇形面積為8cm2,則該扇形的周長是12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{x+a}{{{x^2}+3{a^2}}}(a≠0,a∈R)$.
(1)設(shè)函數(shù)$g(x)=\frac{{{x^2}+12}}{x+2}{e^x}$,當a=-2時,討論y=f(x)g(x)的單調(diào)性,并證明當x>0時,(x-2)ex+x+2>0
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)當a=1時,若對任意x1,x2∈[-3,+∞),有f(x1)-f(x2)≤m成立,求實數(shù)m的最小值.

查看答案和解析>>

同步練習冊答案