(本小題13分)已知離心率為的橢圓 經(jīng)過(guò)點(diǎn)

(1)求橢圓的方程;

(2)過(guò)左焦點(diǎn)且不與軸垂直的直線交橢圓兩點(diǎn),若 (為坐標(biāo)原點(diǎn)),求直線的方程.

 

【答案】

(1) (2)  的方程是 

【解析】(1)由題意可得兩個(gè)關(guān)于a,b的方程,且.

(2) 橢圓的左焦點(diǎn)為,則直線的方程可設(shè)為

代入橢圓方程得:,

然后根據(jù),可求出.

再根據(jù)建立關(guān)于k的方程,解出k的值。

解:(1)依題意得:,且

    解得:

故橢圓方程為      ……………………………………………………4分

(2)橢圓的左焦點(diǎn)為,則直線的方程可設(shè)為

代入橢圓方程得:

設(shè)    …………6分

    得:,

 ……………………………………………………………………9分

,原點(diǎn)的距離,

解得    的方程是 ………………………………13分

(用其他方法解答參照給分)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆北京市東城區(qū)示范校高三第二學(xué)期綜合練習(xí)數(shù)學(xué)文卷 題型:解答題

(本小題13分)已知向量
(1)當(dāng)時(shí),求的值;
(2)求上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市示范校高三12月綜合練習(xí)(一)文科數(shù)學(xué) 題型:解答題

(本小題13分)

已知等比數(shù)列滿足,且的等差中項(xiàng).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若,,求使  成立的正整數(shù)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年福建省高一上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題

(本小題13分)

已知直線過(guò)直線的交點(diǎn);

(Ⅰ)若直線與直線 垂直,求直線的方程.

(Ⅱ)若原點(diǎn)到直線的距離為1.求直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省協(xié)作體高三第二次聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本小題13分)

已知拋物線方程為,過(guò)作直線.

①若軸不垂直,交拋物線于A、B兩點(diǎn),是否存在軸上一定點(diǎn),使得?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由?

②若軸垂直,拋物線的任一切線與軸和分別交于M、N兩點(diǎn),則自點(diǎn)M到以QN為直徑的圓的切線長(zhǎng)為定值,試證之;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市東城區(qū)示范校高三第二學(xué)期綜合練習(xí)數(shù)學(xué)文卷 題型:解答題

(本小題13分)已知向量,

(1)當(dāng)時(shí),求的值;

(2)求上的值域.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案