(1)求函數(shù)數(shù)學(xué)公式的定義域.
(2)求函數(shù)y=4x-3•2x+3,x∈[-1,2]的值域.

解:(1)要使函數(shù)的解析式有意義
自變量x須滿足:
≥0
即34x-2-3-3≥0
即 4x-2+3≥0
解得x≥
故函數(shù)的定義域?yàn)閇,+∞)
(2)令t=2x,∵x∈[-1,2]
∴t∈[,4]
則y=4x-3•2x+3=t2-3t+3=(t-2+,
當(dāng)t=時(shí),y取最小值,當(dāng)t=4時(shí),y取最大值7,
∴函數(shù)的值域?yàn)閇,7]
分析:(1)根據(jù)偶次被開(kāi)數(shù)大于等于0,可得自變量x須滿足:≥0,將不等式中各指數(shù)式均化為以3為底,進(jìn)而根據(jù)指數(shù)函數(shù)的性質(zhì)要得x的范圍,即函數(shù)的定義域;
(2)令t=2x,結(jié)合指數(shù)函數(shù)單調(diào)性及已知可得t的取值范圍,進(jìn)而根據(jù)二次函數(shù)在定區(qū)間上的值域求法,分別求出函數(shù)的最值,可得函數(shù)的值域.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是復(fù)合函數(shù)的單調(diào)性,函數(shù)的定義域和值域是函數(shù)問(wèn)題的綜合應(yīng)用,(1)的關(guān)鍵是熟練掌握指數(shù)函數(shù)的單調(diào)性,(2)的關(guān)鍵是利用換元法對(duì)函數(shù)的解析式進(jìn)行變形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+3
+
1
x+2
,
(1)求函數(shù)的定義域;     
(2)求f(-3),f(
2
3
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+2
+
1
x+1

(1)求函數(shù)的定義域;
(2)求f(-2)的值;
(3)求f(x-1)的解析式及其定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2
1-x1+x

(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性,并給予證明;
(3)求不等式f(x)>1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=log4(2x+3-x2),
(1)求函數(shù)的定義域;
(2)求y的最大值,并求取得最大值時(shí)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln
x+1x-1

(1)求函數(shù)的定義域;   
(2)討論f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案