A. | (-∞,$\frac{3}{2}$] | B. | [$\frac{3}{2}$,+∞) | C. | (-1,$\frac{3}{2}$] | D. | [$\frac{3}{2}$,4] |
分析 令t=4+3x-x2≥0,求得函數(shù)的定義域,且f(x)=g(t)=$\sqrt{t}$,本題即求函數(shù)t在定義域內(nèi)的減區(qū)間,利用二次函數(shù)的性質(zhì)可得結(jié)論.
解答 解:令t=4+3x-x2≥0,求得-1≤x≤4,可得函數(shù)的定義域為[-1,4],f(x)=g(t)=$\sqrt{t}$,
故本題即求函數(shù)t在定義域內(nèi)的減區(qū)間,利用二次函數(shù)的性質(zhì)可得t在定義域內(nèi)的減區(qū)間為[$\frac{3}{2}$,4],
故選:D.
點評 本題主要考查復合函數(shù)的單調(diào)性,二次函數(shù)、對數(shù)函數(shù)的性質(zhì),屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}-1}}{2}$ | B. | $\frac{{\sqrt{5}+1}}{2}$ | C. | $\sqrt{5}+1$ | D. | $\sqrt{5}-1$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | m≥2 | B. | m≤-2 | C. | m≤-2或x≥2 | D. | -2≤m≤2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com