13.若增函數(shù)f(x)=ax+b與x軸交點(diǎn)是(2,0),則不等式bx2-ax>0的解集是( 。
A.$(-∞,-\frac{1}{2})∪(0,+∞)$B.$(0,\frac{1}{2})$C.$(-\frac{1}{2},0)$D.$(-∞,0)∪(\frac{1}{2},+∞)$

分析 根據(jù)增函數(shù)的定義,以及函數(shù)與x軸的交點(diǎn),求得a>0,b=-2a<0,化簡(jiǎn)不等式解得即可.

解答 解:∵f(x)=ax+b為增函數(shù)且與x軸交點(diǎn)是(2,0),
∴a>0,2a+b=0,即b=-2a<0,
∴不等式bx2-ax>0轉(zhuǎn)化為2x2+x<0,解得-$\frac{1}{2}$<x<0,
故不等式的解集為(-$\frac{1}{2}$,0),
故選:C

點(diǎn)評(píng) 本題考查了增函數(shù)的定義和不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知變量x,y滿足條件$\left\{\begin{array}{l}{3x+y-6≥0}\\{x-y-2≤0}\\{y-3≤0}\end{array}\right.$,則$\frac{y+1}{x}$的取值范圍是( 。
A.[0,3]B.[$\frac{1}{2}$,3]C.[$\frac{1}{2}$,4]D.[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知A={x|(2x2-6•2x+8≤0},函數(shù)f(x)=log2x(x∈A). 
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)h(x)=[f(x)]2-log2(2x),求函數(shù)h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若正實(shí)數(shù)x,y滿足x+2y+2xy-8=0,則x+2y的最小值( 。
A.3B.4C.$\frac{9}{2}$D.$\frac{11}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.要建造一個(gè)容積為4800m3,深為3m的長(zhǎng)方體無(wú)蓋水池,如果池底和池壁的造價(jià)每平方米分別為150元和120,那么怎樣設(shè)計(jì)水池能使總造價(jià)最低,最低總造價(jià)為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知非空集合A={x∈R|x2<a2},B={x|1<x<3},若A∩B={x|1<x<2},則實(shí)數(shù)a的值為±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(xt)=xt2+bxt
(1)若b=2,且xt=log2t,t∈[$\frac{1}{2}$,2],求f(xt)的最大值;
(2)當(dāng)y=f(xt)與y=f(f(xt))有相同的值域時(shí),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)全集為R,集合A={x|-3≤x<6},B={x|2<x<9}.
(Ⅰ)求A∩B,A∪(∁RB);
(Ⅱ)已知C={x|a<x<2a+1},若C⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知全集U=R,N={x|-3<x<0},M={x|x<-1},則圖中陰影部分表示的集合是( 。
A.{x|-3<x<-1}B.{x|-3<x<0}C.{x|-1≤x<0}D.{x<-3}

查看答案和解析>>

同步練習(xí)冊(cè)答案