已知點(diǎn)Pn(an,bn)滿足:an+1=an·bn+1,bn+1,n∈N,且已知P0(,).

(1)求過P0、P1的直線l的方程;

(2)判斷點(diǎn)Pn(n≥2)與直線l的位置關(guān)系,并證明你的結(jié)論.

答案:
解析:

  解:(1)由a0,b0,得

  b1,a1×

  顯然直線l的方程為x+y=1.

  (2)由a1,b1,得

  b2,a2×

  ∴點(diǎn)P2l,猜想點(diǎn)Pn(n≥2)在直線l上,

  以下用數(shù)學(xué)歸納法證明:

  當(dāng)n=2時(shí),點(diǎn)P2l,

  假設(shè)當(dāng)n=k(k≥2)時(shí),點(diǎn)Pkl,即

  ak+bk=1,

  當(dāng)n=k+1時(shí),

  ak+1+bk+1=ak·bk+1+bk+1=(1+ak)bk+1

 。(1+ak)=1.

  ∴點(diǎn)Pk+1l

  綜上,點(diǎn)Pnl(n≥2).


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知點(diǎn)A(1,0),B(0,1)和互不相同的點(diǎn)P1,P2,P3,…,Pn,…,滿足
OPn
=an
OA
+bn
OB
(n∈N*)
,O為坐標(biāo)原點(diǎn),其中{an}、{bn}分別為等差數(shù)列和等比數(shù)列,P1是線段AB的中點(diǎn),對于給定的公差不為零的an,都能找到唯一的一個(gè)bn,使得P1,P2,P3,…,Pn,…,都在一個(gè)指數(shù)函數(shù)
 
(寫出函數(shù)的解析式)的圖象上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)集L={(x,y)|y=
m
n
},其中
m
=(2x-b,1),
n
=(1,b+1),點(diǎn)列Pn(an,bn)(n∈N+)在L中,p1為L與y軸的交點(diǎn),數(shù)列{an}是公差為1的等差數(shù)列.
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)若f(n)=
an,(n為奇數(shù))
bn,(n為偶數(shù))
,令Sn=f(1)+f(2)+f(3)+…+f(n),試寫出Sn關(guān)于n的表達(dá)式;
(Ⅲ)若f(n)=
an,(n為奇數(shù))
bn,(n為偶數(shù))
,給定奇數(shù)m(m為常數(shù),m∈N+,m>2).是否存在k∈N+,,使得
f(k+m)=2f(m),若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1),點(diǎn)列Pn(an,bn)在L中,P1為L與y軸的交點(diǎn),等差數(shù)列{an}的公差為1,n∈N*
(I)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)若f(n)=
an  n為正奇數(shù)
bn  n為正偶數(shù)
,令Sn=f(1)+f(2)+f(3)+…+f(n);試寫出Sn關(guān)于n的函數(shù)解析式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,1+b)
,又知點(diǎn)列Pn(an,bn)∈L,P1為L與y軸的交點(diǎn).等差數(shù)列{an}的公差為1,n∈N*
(Ⅰ)求Pn(an,bn);
(Ⅱ)若f(n)=
an,n=2k-1
bn,n=2k
k∈N*,f(k+11)=2f(k)
,求出k的值;
(Ⅲ)對于數(shù)列{bn},設(shè)Sn是其前n項(xiàng)和,是否存在一個(gè)與n無關(guān)的常數(shù)M,使
Sn
S2n
=M
,若存在,求出此常數(shù)M,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)集L={(x,y)|y=
m
n
}
,其中
m
=(2x-b,1),
n
=(1,b+1)
,點(diǎn)列Pn(an,bn)在L中,P1為L與y軸的交點(diǎn),等差數(shù)列{an}的公差為1,n∈N+
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若f(n)=
an(n=2k-1)
bn(n=2k)
(k∈N+)
,是否存在k∈N+使得f(k+11)=2f(k),若存在,求出k的值;若不存在,請說明理由.
(3)求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
(n≥2,n∈N*).

查看答案和解析>>

同步練習(xí)冊答案