已知三個(gè)正整數(shù)按某種順序排列成等差數(shù)列。
(1)求的值;
(2)若等差數(shù)列的首項(xiàng)、公差都為,等比數(shù)列的首項(xiàng)、公比也都為,前項(xiàng)和分別為,且,求滿足條件的正整數(shù)的最大值。

(1)2(2)9

解析試題分析:
、(1)是正整數(shù),是正整數(shù),,————4分
———————————————————————6分
(2),—————————————————9分
,,——————————————12分
,即————————————13分
是正整數(shù),的最大值是9!14分
考點(diǎn):等差數(shù)列,數(shù)列的求和
點(diǎn)評(píng):考查了等差數(shù)列的通項(xiàng)公式,以及數(shù)列地球和的運(yùn)用,并能結(jié)合等比數(shù)列來(lái)求解不等式,得到結(jié)論,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是首項(xiàng)為19,公差為-2的等差數(shù)列,的前n項(xiàng)和。
(Ⅰ)求通項(xiàng)
(Ⅱ)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知三個(gè)正整數(shù),1,按某種順序排列成等差數(shù)列.
(1)求的值;
(2)若等差數(shù)列的首項(xiàng)、公差都為,等比數(shù)列的首項(xiàng)、公比也都為,前項(xiàng)和分別
,且,求滿足條件的正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
設(shè){an}是公差不為O的等差數(shù)列,Sn是其前n項(xiàng)和,已知,且
(1)求數(shù)列{an}的通項(xiàng)an
(2)求等比數(shù)列{bn}滿足b1=S1 ,b2=, 求和Tn=a1b1+a2b2+…+anbn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)  
已知數(shù)列的各項(xiàng)排成如圖所示的三角形數(shù)陣,數(shù)陣中每一行的第一個(gè)數(shù)構(gòu)成等差數(shù)列,的前n項(xiàng)和,且

( I )若數(shù)陣中從第三行開(kāi)始每行中的數(shù)按從左到右的順序均構(gòu)成公比為正數(shù)的等比數(shù)列,且公比相等,已知,求的值;
(Ⅱ)設(shè),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知數(shù)列的前n項(xiàng)和為,且,(=1,2,3…)
(1)求數(shù)列的通項(xiàng)公式;
(2)記,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
公差不為零的等差數(shù)列中,,且、、 成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)已知數(shù)列是公差不為零的等差數(shù)列,成等比數(shù)列
(1)求數(shù)列的通項(xiàng)公式          (2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分) 已知等差數(shù)列的前n項(xiàng)和為,且,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案