【題目】已知橢圓的左、右焦點(diǎn)分別為,橢圓過(guò)點(diǎn),直線軸于,且為坐標(biāo)原點(diǎn).

1)求橢圓的方程;

2)設(shè)是橢圓的上頂點(diǎn),過(guò)點(diǎn)分別作直線交橢圓兩點(diǎn),設(shè)這兩條直線的斜率分別為,且,證明:直線過(guò)定點(diǎn).

【答案】(12)詳見(jiàn)解析

【解析】試題分析:(1)將點(diǎn)代入橢圓方程得,由,則,聯(lián)立方程得解;(2)分為直線斜率存在和斜率不存在兩種情況,當(dāng)斜率不存在時(shí),直接代入得解;當(dāng)斜率存在時(shí),聯(lián)立直線和橢圓的方程得,結(jié)合韋達(dá)定理,運(yùn)用整體代換的思想化簡(jiǎn)得,可得其恒過(guò)定點(diǎn).

試題解析:(1橢圓過(guò)點(diǎn), ,

,,則,

,由①②,

橢圓的方程為

2)當(dāng)直線的斜率不存在時(shí) ,設(shè),則,由,得

當(dāng)直線的斜率存在時(shí),設(shè)的方程為

,

,

,

,

故直線過(guò)定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直四棱柱ABCD﹣A1B1C1D1內(nèi)接于半徑為 的半球O,四邊形ABCD為正方形,則該四棱柱的體積最大時(shí),AB的長(zhǎng)是(
A.1
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù)的最小值為1.

(1)求的值;

(2)若,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《中國(guó)詩(shī)詞大會(huì)》(二季)亮點(diǎn)頗多,十場(chǎng)比賽每場(chǎng)都有一首特別設(shè)計(jì)的開(kāi)場(chǎng)詩(shī)詞,在聲光舞美的配合下,百人團(tuán)齊聲朗誦,別有韻味.若《將進(jìn)酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩(shī)詞排在后六場(chǎng),且《將進(jìn)酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場(chǎng)的排法有( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn . 已知a1=1, =an+1 n2﹣n﹣ ,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿(mǎn)足an﹣an1=bna ,求數(shù)列{bn}的n前項(xiàng)和Tn;
(3)是否存在實(shí)數(shù)λ,使得不等式λa +a + ≥0恒成立,若存在,求出λ的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為正方形, 平面,已知為線段的中點(diǎn).

(I)求證: 平面;

(II)求平面與平面所成銳二面角的余弦角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以下三視圖中有三個(gè)同時(shí)表示某一個(gè)三棱錐,則不是該三棱錐的三視圖的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2cos(ωx+ )(其中ω>0,x∈R)的最小正周期為10π.
(1)求ω的值;
(2)設(shè)α,β∈[0, ],f(5α+ )=﹣ ,f(5β﹣ )= ,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為,橢圓上任意一點(diǎn)到右焦點(diǎn)距 離的最大值為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)點(diǎn)作直線與曲線交于兩點(diǎn),點(diǎn)滿(mǎn)足為坐標(biāo)原點(diǎn)),求四邊形面積的最大值,并求此時(shí)的直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案