|
(1) |
解:f(x)=x3+ax2+bx+c,f¢ (x)=3x2+2ax+b 由f¢ ()=,f¢ (1)=3+2a+b=0得 a=,b=-2……………………4分 f¢ (x)=32--2=(3+2)(-1),函數(shù)f(x)的單調區(qū)間如下表: 所以函數(shù)f()的遞增區(qū)間是(-¥ ,-)與(1,+¥ ) 遞減區(qū)間是(-,1)……………………7分 |
(2) |
解:f(x)=3-2-2+c,Î ,由(1)當=-時,f(x)=+c 為極大值,而f(2)=2+c,則f(2)=2+c為最大值. 要使f(x)< c2(Î )恒成立,只需c2> f(2)=2+c 解得c< -1或c> 2…………………………13分 |
科目:高中數(shù)學 來源:山西省實驗中學2006-2007學年度第一學期高三年級第三次月考 數(shù)學試題 題型:044
|
查看答案和解析>>
科目:高中數(shù)學 來源:河南省信陽市商城高中2006-2007學年度高三數(shù)學單元測試、不等式二 題型:044
解答題:解答應寫出文字說明,證明過程或演算步驟.
證明下列不等式:
(文)若x,y,z∈R,a,b,c∈R+,則z2≥2(xy+yz+zx)
(理)若x,y,z∈R+,且x+y+z=xyz,則≥2
查看答案和解析>>
科目:高中數(shù)學 來源:河南省信陽市商城高中2006-2007學年度高三數(shù)學單元測試、不等式二 題型:044
|
查看答案和解析>>
科目:高中數(shù)學 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學沖刺預測卷(四)附答案 題型:044
解答題:解答應寫出文字說明,證明過程或演算步驟.
已知函數(shù)f(x)的圖像與函數(shù)的圖像關于點A(0,1)對稱.
(1)求f(x)的解析式;
(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍;
(理)若,且g(x)在區(qū)間(0,2]上為減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學沖刺預測卷(四)附答案 題型:044
解答題:解答應寫出文字說明,證明過程或演算步驟.
如圖,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.橢圓C以A、B為焦點且經過點D.
(1)建立適當坐標系,求橢圓C的方程;
(2)(文)是否存在直線l與橢圓C交于M、N兩點,且線段MN的中點為C,若存在,求l與直線AB的夾角,若不存在,說明理由.
(理)若點E滿足,問是否存在不平行AB的直線l與橢圓C交于M、N兩點且|ME|=|NE|,若存在,求出直線l與AB夾角的范圍,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com