若F1、F2分別為雙曲線 -=1下、上焦點(diǎn),O為坐標(biāo)原點(diǎn),P在雙曲線的下支上,點(diǎn)M在上準(zhǔn)線上,且滿足:,
(1)求此雙曲線的離心率;
(2)若此雙曲線過N(,2),求此雙曲線的方程
(3)若過N(,2)的雙曲線的虛軸端點(diǎn)分別B1,B2(B2在x軸正半軸上),點(diǎn)A、B在雙曲線上,且,求時(shí),直線AB的方程.
(1) e=2;(2) 雙曲線的方程為-=1;(3) AB的方程為y=±(x-3) .
(1) ,∴PF1OM為平行四邊形,
又知M在∠PF1O的角平分線上,
∴四邊形PF1OM為菱形,且邊長為=c
∴=2a+=2a+c,由第二定義=e即=e,∴+1=e且e>1
∴e=2
(2)由e=2,∴c=2a即b2=3a2,雙曲線方程為 -=1
又N(,2)在雙曲線上,∴-=1,∴a2=3∴雙曲線的方程為-=1;
(3)由知AB過點(diǎn)B2,若AB⊥x軸,即AB的方程為x=3,此時(shí)AB1與BB1不垂直;設(shè)AB的方程為y=k(x-3)代入-=1得
(3k2-1)x2-18k2x+27k2-9=0
由題知3k2-1≠0且△>0即k2> 且k2≠,
設(shè)交點(diǎn)A(x1,y1),B(x2,y2),=(x1+3,y1),=(x2+3,y2),
∵,∴=0即x1x2+3(x1+x2)+9+y1y2=0
此時(shí)x1+x2=,x1·x2=9,
y1y2=k2(x1-3) (x2-3)=k2[x1x2-3(x1+x2)+9]= k2[18-]=-
∴9+3+9-=0,∴5 k2=1,∴k=±
∴AB的方程為y=±(x-3) .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
|PF2|2 |
|PF1| |
A、(1,+∞) |
B、(0,3] |
C、(1,3] |
D、(0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:不詳 題型:單選題
x2 |
a2 |
y2 |
b2 |
|PF2|2 |
|PF1| |
A.(1,+∞) | B.(0,3] | C.(1,3] | D.(0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖北省襄樊四中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖北省襄樊四中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省榆林市神木中學(xué)高三(上)數(shù)學(xué)寒假作業(yè)1(理科)(解析版) 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com