已知函數(shù),在定義域內(nèi)有且只有一個(gè)零點(diǎn),存在, 使得不等式成立. 若,是數(shù)列的前項(xiàng)和.

(I)求數(shù)列的通項(xiàng)公式;

(II)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的正整數(shù)的個(gè)數(shù)稱(chēng)為這個(gè)數(shù)列的變號(hào)數(shù),令(n為正整數(shù)),求數(shù)列的變號(hào)數(shù);

(Ⅲ)設(shè)),使不等式

 恒成立,求正整數(shù)的最大值.

解:(I)∵在定義域內(nèi)有且只有一個(gè)零點(diǎn)

            ……1分

當(dāng)=0時(shí),函數(shù)上遞增     故不存在,

使得不等式成立        …… 2分

綜上,得    …….3分

    …………4分                

(II)解法一:由題設(shè)

時(shí),

時(shí),數(shù)列遞增           

                可知

時(shí),有且只有1個(gè)變號(hào)數(shù);     又

             ∴此處變號(hào)數(shù)有2個(gè)

綜上得數(shù)列共有3個(gè)變號(hào)數(shù),即變號(hào)數(shù)為3           ……9分

解法二:由題設(shè)            

當(dāng)時(shí),令

時(shí)也有   

綜上得數(shù)列共有3個(gè)變號(hào)數(shù),即變號(hào)數(shù)為3                   …………9分

(Ⅲ) 時(shí),

可轉(zhuǎn)化為   

設(shè),

則當(dāng),

.

所以,即當(dāng)增大時(shí),也增大.

要使不等式對(duì)于任意的恒成立,只需

即可.因?yàn)?sub>,

所以.       即

所以,正整數(shù)的最大值為5.                              ……………13分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆北京市昌平區(qū)高三考模擬考試數(shù)學(xué)試卷(文科) 題型:解答題

已知函數(shù),在定義域內(nèi)有且只有一個(gè)零點(diǎn),存在, 使得不等式成立. 若,是數(shù)列的前項(xiàng)和.
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的正整數(shù)的個(gè)數(shù)稱(chēng)為這個(gè)數(shù)列的變號(hào)數(shù),令(n為正整數(shù)),求數(shù)列的變號(hào)數(shù);
(Ⅲ)設(shè)),使不等式
恒成立,求正整數(shù)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年北京市昌平區(qū)高三考模擬考試數(shù)學(xué)試卷(文科) 題型:解答題

已知函數(shù),在定義域內(nèi)有且只有一個(gè)零點(diǎn),存在, 使得不等式成立. 若,是數(shù)列的前項(xiàng)和.

(I)求數(shù)列的通項(xiàng)公式;

(II)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的正整數(shù)的個(gè)數(shù)稱(chēng)為這個(gè)數(shù)列的變號(hào)數(shù),令(n為正整數(shù)),求數(shù)列的變號(hào)數(shù);

(Ⅲ)設(shè)),使不等式

恒成立,求正整數(shù)的最大值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)

已知函數(shù),在定義域內(nèi)有且只有一個(gè)零點(diǎn),存在, 使得不等式成立. 若,是數(shù)列的前項(xiàng)和.

(I)求數(shù)列的通項(xiàng)公式;

(II)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的正整數(shù)的個(gè)數(shù)稱(chēng)為這個(gè)數(shù)列的變號(hào)數(shù),令(n為正整數(shù)),求數(shù)列的變號(hào)數(shù);

(Ⅲ)設(shè)),使不等式

 恒成立,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年四川省眉山市高考數(shù)學(xué)一模試卷(理數(shù))(解析版) 題型:解答題

已知函數(shù),在定義域內(nèi)連續(xù),則b-a=   

查看答案和解析>>

同步練習(xí)冊(cè)答案