16.若復(fù)數(shù)$\frac{2+ai}{1-i}({a∈R})$是純虛數(shù)(i是虛數(shù)單位),則復(fù)數(shù)z=a+(a-3)i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第四象限.

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由已知條件列出方程組,求解即可得a的值,進(jìn)一步求出z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)得答案.

解答 解:∵$\frac{2+ai}{1-i}=\frac{(2+ai)(1+i)}{(1-i)(1+i)}=\frac{2-a+(2+a)i}{2}$=$\frac{2-a}{2}+\frac{2+a}{2}i$是純虛數(shù),
∴$\left\{\begin{array}{l}{\frac{2-a}{2}=0}\\{\frac{2+a}{2}≠0}\end{array}\right.$,解得a=2.
∴z=2-i,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為:(2,-1),位于第四象限.
故答案為:四.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.?dāng)?shù)列{an}滿足a1=0,且an,n+1,an+1成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知{an}是等差數(shù)列,滿足a2=6,a5=15,數(shù)列{bn}滿足b2=8,b5=31,且{bn-an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.(文科)設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}x,x<1\\{x^3}-\frac{1}{x}+1,x≥1\end{array}\right.$,則$f(\frac{1}{f(2)})$=$\frac{2}{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知數(shù)列{an}滿足a1=1,an=a1+$\frac{1}{2}{a_2}+\frac{1}{3}{a_3}+…+\frac{1}{n-1}{a_{n-1}}$(n≥2,n∈N*),若ak=2017,則k=2017.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{{{e^x}-a}}{x}({x∈R})$.
(1)若函數(shù)f(x)在x=1時(shí)取得極值,求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)在區(qū)間[2,4]上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知θ∈[0,2π),當(dāng)θ取遍全體實(shí)數(shù)時(shí),直線xcosθ+ysinθ=4+$\sqrt{2}$sin(θ+$\frac{π}{4}$)所圍成的圖形的面積是( 。
A.πB.C.D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知ω>0,在函數(shù)y=sinωx與y=cosωx的圖象的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)的橫坐標(biāo)之差的絕對(duì)值為2,則ω=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.cos600° 等于( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案