兩個邊長均為3的正方形ABCD和ABEF所在平面垂直相交于AB,M∈AC,N∈FB,且AM=FN.
(1)證明:MN平面BCE;
(2)當AM=FN=
2
  時,求MN的長度.
精英家教網(wǎng)
證明:(1)證法一:(線面平行的判定定理法)
如圖一,作MP⊥BC,NQ⊥BE,P、Q為垂足,連接PQ,
則MPAB,NQAB.
所以MPNQ,
又AM=NF,AC=BF,
所以MC=NB.
又∠MCP=∠NBQ=45°,
所以Rt△MCP≌Rt△NBQ,
所以MP=NQ.
故四邊形MPQN為平行四邊形.
所以MNPQ.…..(4分)
因為PQ平面BCE,MN平面BCE,
所以MN平面BCE…..(6分)
法二:如圖二,過M作MH⊥AB于H,則MHBC.
精英家教網(wǎng)

所以
AM
AC
=
AH
AB

連接NH,由BF=AC,F(xiàn)N=AM,得
FN
FB
=
AH
AB
,
所以NHAFBE.…..(2分)
又∵NH∩BH=H,BC∩BE=B,NH,BH?平面MNH,BC,BE?平面BCE
∴平面MNH平面BCE…..(4分)
因為MN?平面MNH,
所以MN平面BCE.…..(6分)
(2)如圖二,∵AM=FN=
2

由比例關系易得:
AM
AC
=
FN
FB
=
AH
AB
=
MH
BC
=
1
3
,
∴在Rt△ABC中,MH=1,
在Rt△ABF中,NH=2,
∴在Rt△MNH中,MN=
5
.…..(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,將邊長為3的正方形ABCD繞中心O順時針旋轉(zhuǎn)α (0<α<
π
2
)得到正方形A′B′C′D′.根據(jù)平面幾何知識,有以下兩個結論:
①∠A′FE=α;
②對任意α (0<α<
π
2
),△EAL,△EA′F,△GBF,△GB′H,△ICH,△IC′J,△KDJ,△KD′L均是全等三角形.
(1)設A′E=x,將x表示為α的函數(shù);
(2)試確定α,使正方形A′B′C′D′與正方形ABCD重疊部分面積最小,并求最小面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,三棱柱的側棱長和底面邊長均為2,且側棱AA1⊥平面A1B1C1,它的正視圖是等邊三角形,俯視圖是由兩個全等的矩形組成的正方形,該三棱柱的側視圖面積為( 。
A、4
B、2
2
C、2
3
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•浦東新區(qū)一模)如圖所示,在平面直角坐標系xOy上放置一個邊長為1的正方形PABC,此正方形PABC沿x軸滾動(向左或向右均可),滾動開始時,點P位于原點處,設頂點P(x,y)的縱坐標與橫坐標的函數(shù)關系是y=f(x),x∈R,該函數(shù)相鄰兩個零點之間的距離為m.
(1)寫出m的值并求出當0≤x≤m時,點P運動路徑的長度l;
(2)寫出函數(shù)f(x),x∈[4k-2,4k+2],k∈Z的表達式;研究該函數(shù)的性質(zhì)并填寫下面表格:
函數(shù)性質(zhì) 結  論
奇偶性
偶函數(shù)
偶函數(shù)
單調(diào)性 遞增區(qū)間
[4k,4k+2],k∈z
[4k,4k+2],k∈z
遞減區(qū)間
[4k-2,4k],k∈z
[4k-2,4k],k∈z
零點
x=4k,k∈z
x=4k,k∈z
(3)試討論方程f(x)=a|x|在區(qū)間[-8,8]上根的個數(shù)及相應實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年上海市浦東新區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

如圖所示,在平面直角坐標系xOy上放置一個邊長為1的正方形PABC,此正方形PABC沿x軸滾動(向左或向右均可),滾動開始時,點P位于原點處,設頂點P(x,y)的縱坐標與橫坐標的函數(shù)關系是y=f(x),x∈R,該函數(shù)相鄰兩個零點之間的距離為m.
(1)寫出m的值并求出當0≤x≤m時,點P運動路徑的長度l;
(2)寫出函數(shù)f(x),x∈[4k-2,4k+2],k∈Z的表達式;研究該函數(shù)的性質(zhì)并填寫下面表格:
函數(shù)性質(zhì)結  論
奇偶性______
單調(diào)性遞增區(qū)間______
遞減區(qū)間______
零點______
(3)試討論方程f(x)=a|x|在區(qū)間[-8,8]上根的個數(shù)及相應實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,將邊長為3的正方形ABCD繞中心O順時針旋轉(zhuǎn)α (0<α<數(shù)學公式)得到正方形A′B′C′D′.根據(jù)平面幾何知識,有以下兩個結論:
①∠A′FE=α;
②對任意α (0<α<數(shù)學公式),△EAL,△EA′F,△GBF,△GB′H,△ICH,△IC′J,△KDJ,△KD′L均是全等三角形.
(1)設A′E=x,將x表示為α的函數(shù);
(2)試確定α,使正方形A′B′C′D′與正方形ABCD重疊部分面積最小,并求最小面積.

查看答案和解析>>

同步練習冊答案