(本題滿分10分)
如圖,在四邊形中,垂直平分,且,現(xiàn)將四邊形沿折成直二面角,求:
(1)求二面角的正弦值;
(2)求三棱錐的體積.
(1)(2)
(1)解:因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141548075503.gif" style="vertical-align:middle;" />又
.①,又可求    ②
所以由①②得 就是二面角的平面角.
即所求.
(2)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分12分)
已知在四棱錐P-ABCD中,底面ABCD是邊長為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,EF、G分別是PA、PB、BC的中點(diǎn).
(1)求證:EF平面PAD;
(2)求平面EFG與平面ABCD所成銳二面角的大小;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直角梯形中,
橢圓為焦點(diǎn)且過點(diǎn),

(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓的方程;
(2)若點(diǎn)E滿足是否存在斜率的直線與橢圓交于兩點(diǎn),且,若存在,求的取值范圍;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分) 如圖,四棱錐P—ABCD的底面ABCD為一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中點(diǎn)。
(1)求證:BE//平面PAD;
(2)若BE⊥平面PCD,①求異面直線PD與BC所成角的余弦值;
②求二面角E—BD—C的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面的斜線與平面所成的角是45°,則與平面內(nèi)所有不過斜足的直線所成的角中,最大的角是(   )
A.45°B.90°C.135°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

EF是異面直線a、b的公垂線,直線lEF,則la、b交點(diǎn)的個(gè)數(shù)為  (   )
A、0    B、1     C、0或1    D、0,1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在三棱錐中,分別是的中點(diǎn),所成的角為,與平面所成的角為,二面角的平面角為,則的大小關(guān)系是   (    )                            
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知空間中兩點(diǎn),,且,則(    )
A.2B.4C.0D.2或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知正三棱錐的外接球的球心O滿足,且外接球的體積為,則該三棱錐的體積為              

查看答案和解析>>

同步練習(xí)冊答案