函數(shù)
的單調(diào)增區(qū)間是
.
試題分析:求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,
,此函數(shù)可以看作是增函數(shù)
和二次函數(shù)
復合而成,利用復合函數(shù)的單調(diào)性,知所求增區(qū)間為
.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
(其中
為常數(shù)).
(I)當
時,求函數(shù)
的最值;
(Ⅱ)討論函數(shù)
的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知實數(shù)
滿足
,
,設函數(shù)
(1)當
時,求
的極小值;
(2)若函數(shù)
(
)的極小值點與
的極小值點相同,求證:
的極大值小于等于
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設
.
(1)若
,求
最大值;
(2)已知正數(shù)
,
滿足
.求證:
;
(3)已知
,正數(shù)
滿足
.證明:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設a為實數(shù),函數(shù)f(x)=ex-2x+2a,x∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當a>ln2-1且x>0時,ex>x2-2ax+1.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知f(x)=xlnx.
(I)求f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)證明:
都有
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
是定義在R上的可導函數(shù),當x≠0時,
,則關(guān)于x的函數(shù)
的零點個數(shù)為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)f(x)=
x
3-
ax
2+(a-1)x+1在區(qū)間(1,5)上為減函數(shù),在區(qū)間(6,+∞)上為增函數(shù),則實數(shù)a的取值范圍是( )
A.[4,5] | B.[3,5] | C.[5,6] | D.[6,7] |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設
,則函數(shù)
的單調(diào)遞增區(qū)間是________.
查看答案和解析>>