14.已知變量x,y滿足線性約束條件$\left\{\begin{array}{l}{x+y+1≥0}\\{x-y+2≥0}\\{3x+y-2≤0}\end{array}\right.$,若目標函數(shù)z=ax-y僅在點(0,2)處取得最小值,則實數(shù)a的取值范圍是( 。
A.(-∞,-3)B.(3,+∞)C.(-3,1)D.(-1,1)

分析 畫出滿足條件的平面區(qū)域,平移關于目標函數(shù)的直線,結合圖象求出a的范圍即可.

解答 解:畫出滿足線性約束條件$\left\{\begin{array}{l}{x+y+1≥0}\\{x-y+2≥0}\\{3x+y-2≤0}\end{array}\right.$的平面區(qū)域,如圖示:

由目標函數(shù)z=ax-y得:y=ax-z,
而直線x-y+2=0的斜率是1,3x+y-2=0的斜率是-3,
若直線僅在點(0,2)處取得最小值,
只需-3<a<1,
則實數(shù)a的取值范圍是(-3,1),
故選:C.

點評 本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結合思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.已知定義在R上的奇函數(shù),當x>0時,f(x)=alnx+$\frac{1}{ax}$(a>0),且函數(shù)f(x)在x=1處的切線斜率為$\frac{3}{2}$,則方程f(x)=0的實數(shù)根的個數(shù)為( 。
A.0B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.若函數(shù)f(x)=cos(ωx+φ),ω>0,|φ|<$\frac{π}{2}$)的一個零點與之相鄰的對稱軸之間的距離為$\frac{π}{4}$,且x=$\frac{2π}{3}$時f(x)有最小值.
(Ⅰ)求f(x)的解析式;
(Ⅱ)請直接在給定的坐標系中作出函數(shù)f(x)在[0,π]上的圖象;(注:作圖過程可以省略)
(Ⅲ)若x∈[$\frac{π}{4}$,$\frac{5π}{6}$],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知點P,Q的坐標分別為(-1,1),(2,2),若直線l:x+my+m=0與PQ的延長線相交,則實數(shù)m的取值范圍是-3<m<-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=x3-mx,直線l1∥l2,l1與函數(shù)f(x)圖象切于點A、交于點B,l2與函數(shù)f(x)圖象切于點C、交于點D.
(1)求證:四邊形ABCD為平行四邊形;
(2)若四邊形ABCD為矩形,求m的取值范圍;
(3)若四邊形ABCD為正方形,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若$\overrightarrow{a}$為非零向量,且$\overrightarrow$=$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$,$\overrightarrow{c}$=(cosθ,sinθ),則向量$\overrightarrow$與$\overrightarrow{c}$一定滿足( 。
A.$\overrightarrow$∥$\overrightarrow{c}$B.($\overrightarrow$+$\overrightarrow{c}$)⊥($\overrightarrow$-$\overrightarrow{c}$)C.$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{a}$D.$\overrightarrow$•$\overrightarrow{c}$=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知集合A={y|y=$\frac{4}{x}$,x,y∈N},B={y|y=$\frac{16}{x}$,x,y∈N},集合C滿足A⊆C?B,試用列舉法寫出所有的滿足條件的集合C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.等比數(shù)列{an}的各項均為正數(shù),a5=4a3,則$\frac{{a}_{3}+{a}_{4}}{{a}_{4}+{a}_{5}}$的值為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.±$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若a>1,b>0,且a+b=2,則$\frac{1}{a-1}$+$\frac{4}$的最小值為9.

查看答案和解析>>

同步練習冊答案