【題目】空氣污染,又稱為大氣污染,是指由于人類活動或自然過程引起某些物質(zhì)進(jìn)入大氣中,呈現(xiàn)出足夠的濃度,達(dá)到足夠的時間,并因此危害了人體的舒適、健康和福利或環(huán)境的現(xiàn)象.全世界也越來越關(guān)注環(huán)境保護(hù)問題.當(dāng)空氣污染指數(shù)(單位:μg/m3)為0~50時,空氣質(zhì)量級別為一級,空氣質(zhì)量狀況屬于優(yōu);當(dāng)空氣污染指數(shù)為50~100時,空氣質(zhì)量級別為二級,空氣質(zhì)量狀況屬于良;當(dāng)空氣污染指數(shù)為100~150時,空氣質(zhì)量級別為三級,空氣質(zhì)量狀況屬于輕度污染;當(dāng)空氣污染指數(shù)為150~200時,空氣質(zhì)量級別為四級,空氣質(zhì)量狀況屬于中度污染;當(dāng)空氣污染指數(shù)為200~300時,空氣質(zhì)量級別為五級,空氣質(zhì)量狀況屬于重度污染;當(dāng)空氣污染指數(shù)為300以上時,空氣質(zhì)量級別為六級,空氣質(zhì)量狀況屬于嚴(yán)重污染.20171月某日某省x個監(jiān)測點(diǎn)數(shù)據(jù)統(tǒng)計如下:

空氣污染指數(shù)

(單位:μg/m3

監(jiān)測點(diǎn)個數(shù)

15

40

y

10

1)根據(jù)所給統(tǒng)計表和頻率分布直方圖中的信息求出x,y的值,并完成頻率分布直方圖;

(2)若A市共有5個監(jiān)測點(diǎn),其中有3個監(jiān)測點(diǎn)為輕度污染,2個監(jiān)測點(diǎn)為良.從中任意選取2個監(jiān)測點(diǎn),事件A“其中至少有一個為良”發(fā)生的概率是多少?

【答案】(1)見解析;(2)

【解析】試題分析:(1)由頻率分布直方圖可得小長方形面積等于對應(yīng)區(qū)間概率,除以組距得對應(yīng)區(qū)間縱坐標(biāo),(2)利用枚舉法確定從A市中任取2個的基本事件總數(shù),再確定至少有一個為良所包含的基本事件數(shù),最后根據(jù)古典概型概率公式求概率.

試題解析:(1)

由于 , ,

則頻率分布直方圖如右圖所示,

(2)設(shè)A市空氣質(zhì)量狀況屬于輕度污染3個監(jiān)測點(diǎn)為

1,2,3,空氣質(zhì)量狀況屬于良的2個監(jiān)測點(diǎn)為4,5,

從中任取2個的基本事件分別為

(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10種,其中事件A“其中至少有一個為良”包含的 基本事件為(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)共7種,

所以事件A“其中至少有一個為良”發(fā)生的概率是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, 是邊長為的正三角形, 平面,且在平面的同側(cè),它們在內(nèi)的正射影分別是,且, 的距離為.

(1)求點(diǎn)到平面的距離;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司在迎新年晚會上舉行抽獎活動,有甲、乙兩個抽獎方案供員工選擇;

方案甲:員工最多有兩次抽獎機(jī)會,每次抽獎的中獎率為.第一次抽獎,若未中獎,則抽獎結(jié)束.若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進(jìn)行第二次抽獎;若正面朝上,員工則須進(jìn)行第二次抽獎,且在第二次抽獎中,若中獎,獲得獎金1000元;若未中獎,則所獲獎金為0元.

方案乙:員工連續(xù)三次抽獎,每次中獎率均為,每次中獎均可獲獎金400元.

(1)求某員工選擇方案甲進(jìn)行抽獎所獲獎金(元)的分布列;

(2)某員工選擇方案乙與選擇方案甲進(jìn)行抽獎,試比較哪個方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為三角形的三邊,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與學(xué)生細(xì)心程度的關(guān)系,在本校隨機(jī)調(diào)查了100名學(xué)生進(jìn)行研究.研究結(jié)果表明:在數(shù)學(xué)成績及格的60名學(xué)生中有45人比較細(xì)心,另外15人比較粗心;在數(shù)學(xué)成績不及格的40名學(xué)生中有10人比較細(xì)心,另外30人比較粗心.

(1)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表;

數(shù)學(xué)成績及格

數(shù)學(xué)成績不及格

合計

比較細(xì)心

45

比較粗心

合計

60

100

(2)能否在犯錯誤的概率不超過0.001的前提下認(rèn)為學(xué)生的數(shù)學(xué)成績與細(xì)心程度有關(guān)系?

參考數(shù)據(jù):獨(dú)立檢驗(yàn)隨機(jī)變量的臨界值參考表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上有最大值3和最小值.

(1)求實(shí)數(shù)的值;

(2)設(shè),若不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎.按文理科用分層抽樣的方法抽取200人的成績作為樣本,得到成績的頻率分布直方圖(見下圖)

(Ⅰ)求所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(Ⅱ)填寫下面的列聯(lián)表,能否有超過95%的把握認(rèn)為“獲獎與學(xué)生的文理科有關(guān)”?

附表及公式:

,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標(biāo)方程為,在以極點(diǎn)為直角坐標(biāo)原點(diǎn),極軸為軸的正半軸建立的平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).

(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;

(2)在平面直角坐標(biāo)系中,設(shè)曲線經(jīng)過伸縮變換 得到曲線,若為曲線上任意一點(diǎn),求點(diǎn)到直線的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (是自然對數(shù)的底數(shù)), .

(1)求曲線在點(diǎn)處的切線方程;

(2)求的單調(diào)區(qū)間;

(3)設(shè),其中的導(dǎo)函數(shù),證明:對任意.

查看答案和解析>>

同步練習(xí)冊答案