tan660°的值為
 
考點:運用誘導公式化簡求值
專題:三角函數(shù)的求值
分析:由條件利用誘導公式求得所給式子的值.
解答: 解:tan660°=tan(2×360°-60°)=-tan60°=-
3
,
故答案為:-
3
點評:本題主要考查應用誘導公式化簡三角函數(shù)式,要特別注意符號的選取,這是解題的易錯點,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,滿足對任意x1,x2∈(0,1)(x1≠x2),都有
f(x2)-f(x1)
x2-x1
>0的函數(shù)是( 。
A、y=
x-1
B、y=(x-1)2
C、y=2-x
D、y=log2(x+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下表提供了某廠節(jié)能降耗技術改進后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù).
x3456
y2.5344.5
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的回歸方程
y
=
b
x+
a
;
(2)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)(1)求出的回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)計算回歸系數(shù)
a
,
b
.公式為
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=Asin(ωx+φ)+k(A>0,ω>0,|φ|<
π
2
,x∈R)的部分圖象如圖所示,求該函數(shù)表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=1.70.2,b=log2.10.9,c=0.82.1,則( 。
A、a>b>c
B、a>c>b
C、c>a>b
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合A={-1,1},B={x|x+m=0},且A∪B=A,則m的值為( 。
A、1B、-1
C、1或-1D、1或-1或0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知S是△ABC所在平面外一點,∠ASC=90°,∠ASB=∠BSC=60°,且SA=SB=SC.
(1)求證:平面SAC⊥平面ABC;
(2)求二面角B-AS-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m>0,命題P:定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=ex,且2f(x)<ex+m對任意x∈[ln
1
2
,2]恒成立;命題Q:函數(shù)y=logmx在其定義域上為減函數(shù),若“P或Q”為真命題,“P且Q”為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=xlnx,g(x)=x2-1.
(1)令h(x)=f(x)-g(x),求h(x)的單調(diào)區(qū)間;
(2)若當x≥1時,f(x)-mg(x)≤0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案