6.在△ABC中,若b=1,c=$\sqrt{3}$,A=$\frac{π}{6}$,則cos5B=( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{1}{2}$或-1D.-$\frac{\sqrt{3}}{2}$或0

分析 由余弦定理求得a的值,可知∴△ABC為等腰三角形,B=A=$\frac{π}{6}$,即可求得cos5B的值.

解答 解:在△ABC中,由余弦定理可知:a2=b2+c2-2bccosA,
∴a2=1+3-2×1×$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=1,
∴a=1,
∴△ABC為等腰三角形,B=A=$\frac{π}{6}$,
cos5B=cos$\frac{5π}{6}$=-$\frac{\sqrt{3}}{2}$,
故答案選:A.

點(diǎn)評(píng) 本題考查余弦定理的應(yīng)用,特殊角的三角函數(shù)值,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}中,a1=1,an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n,n為奇數(shù)}\\{{a}_{n}-3n,n為偶數(shù)}\end{array}\right.$
(1)求a2,a3,a4的值;
(2)求證:數(shù)列{a2n-$\frac{3}{2}$}是等比數(shù)列;
(3)求數(shù)列{an}的前n項(xiàng)和Sn,并求滿足Sn>0的所有正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知定義在R上的函數(shù)f(x)滿足f(-x)=f(x),且當(dāng)x<0,f(x)=3x+1,若a=2${\;}^{\frac{4}{3}}$,b=4${\;}^{\frac{2}{5}}$,c=25${\;}^{\frac{1}{3}}$,則有( 。
A.f(a)<f(b)<f(c)B.f(b)<f(c)<f(a)C.f(b)<f(a)<f(c)D.f(c)<f(a)<f(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.若實(shí)數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.
(1)若x2-1比1遠(yuǎn)離0,求x的取值范圍;
(2)已知0<a1<a2<a3,求使得2比2-aix(i=1,2,3)遠(yuǎn)離1都成立的x取值范圍;
(3)設(shè)0<x<1,且a≠1,則loga(1-x)比loga(1+x)那個(gè)遠(yuǎn)離零?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.工人月工資y(元)依勞動(dòng)生產(chǎn)率x(千元)變化的回歸方程為$\widehat{y}$=50+60x,下列判斷正確的是(  )
A.勞動(dòng)生產(chǎn)率為1 000元時(shí),工資為110元
B.勞動(dòng)生產(chǎn)率提高1 000元,則工資提高60元
C.勞動(dòng)生產(chǎn)率提高1 000元,則工資提高110元
D.當(dāng)月工資為210元時(shí),勞動(dòng)生產(chǎn)率為1 500元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線AB,平面ABCD∩平面ABPE=AB,且AB=BP=2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)設(shè)點(diǎn)M為棱PD中點(diǎn),在面ABCD內(nèi)是否存在點(diǎn)N,使得MN⊥平面ABCD?若存在,
請(qǐng)證明;若不存在,請(qǐng)說明理由;
(2)求二面角D-PE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請(qǐng)歸但求穿墻術(shù).得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術(shù)”:
2$\sqrt{\frac{2}{3}}$=$\sqrt{2\frac{2}{3}}$,3$\sqrt{\frac{3}{8}}$=$\sqrt{3\frac{3}{8}}$,4$\sqrt{\frac{4}{15}}$=$\sqrt{4\frac{4}{15}}$,5$\sqrt{\frac{5}{24}}$=$\sqrt{5\frac{5}{24}}$
則按照以上規(guī)律,若8$\sqrt{\frac{8}{n}}$=$\sqrt{8\frac{8}{n}}$具有“穿墻術(shù)”,則n=( 。
A.7B.35C.48D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系中,動(dòng)點(diǎn)M到定點(diǎn)F(-1,0)的距離和它到直線l:x=-2的距離之比是常數(shù)$\frac{\sqrt{2}}{2}$,記動(dòng)點(diǎn)M的軌跡為T.
(1)求軌跡T的方程;
(2)過點(diǎn)F且不與x軸重合的直線m,與軌跡T交于A,B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)P,與軌跡T是否存在點(diǎn)Q,使得四邊形APBQ為菱形?若存在,請(qǐng)求出直線m的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)橫坐標(biāo)為xn,則log2012x1+log2012x2+…+log2012x2012的值為( 。
A.-log20122011B.-1C.-1+log20122011D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案