【題目】現(xiàn)有年齡在2555歲的一群人身體上的某項數(shù)據(jù),其頻率分布直方圖如下.(注:每組包括左端點,不包括右端點)

1)請補全頻率分布直方圖;

2)估計年齡的平均數(shù);(精確到小數(shù)點后一位數(shù)字)

3)若5055歲的人數(shù)是50,現(xiàn)在想要從2535歲的人群中用分層抽樣的方法抽取30人,那么2530歲這一組人中應(yīng)該抽取多少人?

【答案】(1)見解析;(2)36.8;(3)9人

【解析】

1)由所有組的頻率之和為1可得第二組頻率,根據(jù)組寬算出組高即可畫出;

2)取各個矩形中間的值為這組的均值計算;

3)由5055歲的人數(shù)是50,計算出總?cè)藬?shù)有1000人,再算出25到35歲之間有多少人,根據(jù)比例計算即可.

解:(1)第二組的頻率為:

所以直方圖的高為,補全的頻率分布直方圖如圖

(2)第一組的頻率為,第二組的頻率為,第三組的頻率為,第四組的頻率為,第五組的頻率為,第六組的頻率為,而各組的中點值分別為、、、,故可估計年齡的平均數(shù)為:

(3)50到55歲這一組的頻率為,人數(shù)是50,故得總?cè)藬?shù)是

從而得25到30歲這一組的人數(shù)是

30到35歲這一組的人數(shù)是

那么25到30歲這一組人中應(yīng)該抽取(人)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】過圓上的點作圓的切線,過點作切線的垂線,若直線過拋物線的焦點.

(1)求直線與拋物線的方程

2若直線與拋物線交于點,在拋物線的準線上,,的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,其左焦點與拋物線的焦點重合.

(1)求橢圓的方程;

(2)過動點的直線交軸于點,交橢圓于點,在第一象限,,過點軸的垂線交橢圓于點,連接并延長交橢圓于另一點.設(shè)直線的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上的奇函數(shù).

(1)求的值;

(2)證明上單調(diào)遞減;

(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.

(1).證明:平面PAB⊥平面PAD;

(2).若PA=PD=AB=DC, ∠APD =90°,且四棱錐PABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點P在平面ABC內(nèi)的正投影為點D,D在平面PAB內(nèi)的正投影為點E,連結(jié)PE并延長交AB于點G.

)證明:GAB的中點;

)在圖中作出點E在平面PAC內(nèi)的正投影F(說明作法及理由),并求四面體PDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)的定義域為D={x|x≠0},且滿足對于任意x1,x2D,有f(x1·x2)=f(x1)+f(x2).

(1)求f(1)的值;

(2)判斷f(x)的奇偶性并證明你的結(jié)論;

(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知空間幾何體中, 均為邊長為2的等邊三角形, 為腰長為3的等腰三角形,平面平面,平面平面

(1)試在平面內(nèi)作一條直線,使得直線上任意一點的連線均與平面平行,并給出詳細證明;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位對一崗位面向社會公開招聘,若甲筆試成績與面試成績至少有一項比乙高,則稱甲不亞于乙.在18位應(yīng)聘者中,如果某應(yīng)聘者不亞于其他17人,則稱其為“優(yōu)秀人才”.那么這18人中“優(yōu)秀人才”數(shù)最多為( )

A. 1 B. 2 C. 9 D. 18

查看答案和解析>>

同步練習冊答案