18.函數(shù)f(x)、g(x)滿(mǎn)足如表格:
2x+13579
f(2x+1)1234
x1234
g(x)3579
若g[f(2x+1)]=3,則x=1.

分析 根據(jù)已知中函數(shù)f(x)、g(x)自變量與函數(shù)值的對(duì)應(yīng)表,可得滿(mǎn)足條件的x值.

解答 解:若g[f(2x+1)]=3,
則f(2x+1)=1,
2x+1=3,
解得:x=1,
故答案為:1.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的零點(diǎn),方程思想,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且A,B,C成等差數(shù)列
(1)若b=2$\sqrt{3}$,c=2,求△ABC的面積;
(2)若a,b,c成等比數(shù)列,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知雙曲線$\frac{x^2}{24}-\frac{y^2}{16}$=1,P為雙曲線上一點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),且∠F1PF2=60°,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知x>0,y>0且2x+y=2,則$\frac{1}{x}+\frac{4}{{{y^{\;}}}}$的最小值為3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.750°化成弧度為( 。
A.$\frac{28}{3}$πradB.$\frac{25}{6}$πradC.$\frac{23}{6}$πradD.$\frac{23}{3}$πrad

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知復(fù)數(shù)$z=\frac{(1-i)+2(1+i)}{2-i}$,若z2+az+b=1-i,
(1)求z;
(2)求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知命題p:?x∈R,sinx=2;命題q:?x∈R,x 2-x+1>0.則下列結(jié)論正確的是(  )
A.命題是p∨q假命題B.命題是p∧q真命題
C.命題是(?p)∨(?q)真命題D.命題是(?p)∧(?q)真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.正實(shí)數(shù)x、y滿(mǎn)足2x•2y=4,則實(shí)數(shù)xy的最大值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=2sinxcosx-sin2x-3cos2x+1.
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)y=f(x)在區(qū)間[0,a]上恰有3個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案