橢圓 的焦點(diǎn)為,點(diǎn)在橢圓上,如果線段的中點(diǎn)在軸上,那么的(   )
A.B.C.D.
D
由題意可知PF2軸,所以,所以倍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)軸的非負(fù)半軸上,點(diǎn)到短
軸端點(diǎn)的距離是4,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值是6.
(1)求橢圓的標(biāo)準(zhǔn)方程和離心率;
(2)若為焦點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),動(dòng)點(diǎn)滿足,問(wèn)是否存在一個(gè)定點(diǎn),使到點(diǎn)的距離為定值?若存在,求出點(diǎn)的坐標(biāo)及此定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)
橢圓E的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為.點(diǎn)P(1,)、AB在橢圓E上,且+=m(mR).
(1)求橢圓E的方程及直線AB的斜率;
(2)當(dāng)m=-3時(shí),證明原點(diǎn)O是△PAB的重心,并求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題12分)在平面直角坐標(biāo)系中,已知橢圓的離心率為,其焦點(diǎn)在圓上.
⑴求橢圓的方程;
⑵設(shè)、是橢圓上的三點(diǎn)(異于橢圓頂點(diǎn)),且存在銳角,使
①試求直線的斜率的乘積;
②試求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
在平面直角坐標(biāo)系內(nèi)已知兩點(diǎn)A(-1,0)、B(1,0),若將動(dòng)點(diǎn)P(x,y)的橫坐標(biāo)保持不變,縱坐標(biāo)擴(kuò)大到原來(lái)的倍后得到點(diǎn)Q(x,y),且滿足·="1."
(1)求動(dòng)點(diǎn)P所在曲線C的方程;
(2)過(guò)點(diǎn)B作斜率為-的直線L交曲線C于M、N兩點(diǎn),且++=,試求△MNH的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓(a>b>0)的左右焦點(diǎn)分別為F1,F2,P是橢圓上一點(diǎn)。PF1F2為以F2P為底邊的等腰三角形,當(dāng)60°<PF1F2120°,則該橢圓的離心率的取值范圍是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩點(diǎn),曲線上的動(dòng)點(diǎn)滿足,直線與曲線交于另一點(diǎn)
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在△中,邊長(zhǎng)為,、邊上的中線長(zhǎng)之和等于.若以邊中點(diǎn)為原點(diǎn),邊所在直線為軸建立直角坐標(biāo)系,則△的重心的軌跡方程為:                   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線)的一條漸近線方程為,則該雙曲
線的離心率_________.

查看答案和解析>>

同步練習(xí)冊(cè)答案