對(duì)于函數(shù)f(x),若存在xoR,使f(xo)=xo成立,則xof(x)的不動(dòng)點(diǎn).已知函數(shù)f(x)=ax2(b1)x(b1)(a0).

(1)當(dāng)a1,b=-2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);

(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求 a的取值范圍;

(3)在(2)的條件下,若yf(x)圖象上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且AB兩點(diǎn)關(guān)于直線(xiàn)ykx對(duì)稱(chēng),求b的最小值.

 

答案:
提示:

命題意圖:本題主要考查二次函數(shù)及其圖象、一元二次方程和直線(xiàn)方程以及不等式的綜合應(yīng)用,考查學(xué)生的自學(xué)能力和邏輯思維能力.

解題思路:扣住“不動(dòng)點(diǎn)”的定義,建立相應(yīng)的方程求解.

(1)當(dāng)a1,b=-2時(shí),f(x)=x2x3

由題意知xx2x3,得x1=-1,x23

故當(dāng)a1b=-2時(shí),f(x)的兩個(gè)不動(dòng)點(diǎn)為-1,3

(2)∵f(x)=ax2(b1)x(b1)(a0)恒有兩個(gè)不動(dòng)點(diǎn),

cxax2(b1)x(b1),

ax2bx(b1)=0恒有兩個(gè)相異的實(shí)數(shù)根,得

△=b24ab4a>0(b∈R)恒成立.

于是△’=(4a)216a<0.解得0<a<1

故當(dāng)b∈R,f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn)時(shí),a的取值范圍是0<a<1

(3)由題意,A、B兩點(diǎn)應(yīng)在直線(xiàn)yx上,設(shè)A(x1y1)、B(x2,y2).

∵點(diǎn)A、B關(guān)于直線(xiàn)ykx對(duì)稱(chēng),∴k=-1

設(shè)AB的中點(diǎn)為M(x’,y’).

x1、x2是方程ax2bxb10的兩個(gè)根,

于是,由M在直線(xiàn)y=-x上,得-

b=-a>0,∴2a當(dāng)且僅當(dāng)2a,即a∈(0,1)時(shí)取等號(hào).

b≥-,得b的最小值為-

評(píng)點(diǎn):本題借助不變量思想,以不動(dòng)點(diǎn)作為栽體命題,蘊(yùn)含著“及時(shí)定義,及時(shí)解答”的試題結(jié)構(gòu)特征,新穎而富于思考.將圖象問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題來(lái)研究,充分體現(xiàn)了數(shù)形結(jié)合的思想方法.

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年黃岡中學(xué)一模理) (本小題滿(mǎn)分14分)對(duì)于函數(shù)f(x),若存在,使成立,則稱(chēng)x0f(x)的不動(dòng)點(diǎn). 如果函數(shù)有且僅有兩個(gè)不動(dòng)點(diǎn)0,2,且

(1)試求函數(shù)f(x)的單調(diào)區(qū)間;

(2)已知各項(xiàng)不為零且不為1的數(shù)列{an}滿(mǎn)足,求證:;

(3)設(shè)為數(shù)列{bn}的前n項(xiàng)和,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

       對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱(chēng)x0f(x)的不動(dòng)點(diǎn)  已知函數(shù)f(x)=ax2+(b+1)x+(b–1)(a≠0)

(1)若a=1,b=–2時(shí),求f(x)的不動(dòng)點(diǎn);

(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;

(3)在(2)的條件下,若y=f(x)圖像上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A、B關(guān)于直線(xiàn)y=kx+對(duì)稱(chēng),求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱(chēng)x0f(x)的不動(dòng)點(diǎn).如果函數(shù)

f(x)=ax2bx+1(a>0)有兩個(gè)相異的不動(dòng)點(diǎn)x1x2

⑴若x1<1<x2,且f(x)的圖象關(guān)于直線(xiàn)xm對(duì)稱(chēng),求證:<m<1;

⑵若|x1|<2且|x1x2|=2,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖南師大附中高三第二次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

對(duì)于函數(shù)f(x),若在其定義域內(nèi)存在兩個(gè)實(shí)數(shù)a,b(a<b),使當(dāng)x∈[a,b]時(shí),f(x)的值域也是[a,b],則稱(chēng)函數(shù)f(x)為“布林函數(shù)”,區(qū)間[a,b]稱(chēng)為函數(shù)f(x)的“等域區(qū)間”.

(1)布林函數(shù)的等域區(qū)間是         .

(2)若函數(shù)是布林函數(shù),則實(shí)數(shù)k的取值范圍是           .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖南省華容縣高一第一學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本小題滿(mǎn)分6分)對(duì)于函數(shù)f(x),若存在x0ÎR,使f(x0)=x0成立,則稱(chēng)點(diǎn)(x0,x0)為函數(shù)的不動(dòng)點(diǎn),已知函數(shù)f(x)=ax2+bx-b有不動(dòng)點(diǎn)(1,1)和(-3,-3),求a、b的值。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案