已知,若同時(shí)滿足條件:

,,②

則m的取值范圍是          

 

【答案】

 (-4,0)

【解析】根據(jù)可解得x<1,由于題目中第一個(gè)條件的限制,導(dǎo)致f(x)在是必須是,當(dāng)m=0時(shí),不能做到f(x)在時(shí),所以舍掉,因此,f(x)作為二次函數(shù)開(kāi)口只能向下,故m<0,且此時(shí)2個(gè)根為,為保證條件成立,只需,和大前提m<0取交集結(jié)果為;又由于條件2的限制,可分析得出在恒負(fù),因此就需要在這個(gè)范圍內(nèi)g(x)有得正數(shù)的可能,即-4應(yīng)該比兩個(gè)根中較小的來(lái)的大,當(dāng)時(shí),,解得交集為空,舍。當(dāng)m=-1時(shí),兩個(gè)根同為,舍。當(dāng)時(shí),,解得,綜上所述,

【考點(diǎn)定位】本題考查學(xué)生函數(shù)的綜合能力,涉及到二次函數(shù)的圖像開(kāi)口,根大小,涉及到指數(shù)函數(shù)的單調(diào)性,還涉及到簡(jiǎn)易邏輯中的“或”,還考查了分類(lèi)討論思想。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三條直線l1:2x-y+a=0(a>0),直線l2:-4x+2y+1=0和直線l3:x+y-1=0,且l1與l2的距離是
7
10
5

(1)求a的值;
(2)求l3到l1的角θ;
(3)能否找到一點(diǎn)P,使得P點(diǎn)同時(shí)滿足下列三個(gè)條件:①P是第一象限的點(diǎn);②P點(diǎn)到l1的距離是P點(diǎn)到l2的距離的
1
2
;③P點(diǎn)到l1的距離與P點(diǎn)到l3的距離之比是
2
5
?若能,求P點(diǎn)坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三條直線l1:2x-y+a=0(a>0),l2:-4x+2y+1=0和l3:x+y-1=0,且l1與l2的距離是
7
5
10
;
(1)求a的值;
(2)能否找到一點(diǎn)P同時(shí)滿足下列三個(gè)條件:
①P是第一象限的點(diǎn);
②點(diǎn)P到l1的距離是點(diǎn)P到l2的距離的
1
2
;
③點(diǎn)P到l1的距離與點(diǎn)P到l3的距離之比是
2
5
?若能,求點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三條直線l1:2x-y+a=0(a>0),直線l2:-4x+2y+1=0和直線l3:x+y-1=0,且l1與l2的距離是.

(1)求a的值;w.w.w.k.s.5.u.c.o.m           

(2)求l3到l1的角θ;

(3)能否找到一點(diǎn)P,使得P點(diǎn)同時(shí)滿足下列三個(gè)條件:①P是第一象限的點(diǎn);②P點(diǎn)到l1的距離是P點(diǎn)到l2的距離的;③P點(diǎn)到l1的距離與P點(diǎn)到l3的距離之比是?若能,求P點(diǎn)坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆河南安陽(yáng)一中高二第一次階段測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓,拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為坐標(biāo)原點(diǎn),從每條曲線上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中:

 

 

 

 

 

 

(1)求的標(biāo)準(zhǔn)方程;

(2)請(qǐng)問(wèn)是否存在直線同時(shí)滿足條件:(ⅰ)過(guò)的焦點(diǎn);(ⅱ)與交于不同兩點(diǎn),且滿足.若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年浙江省蒼南縣三校高二上學(xué)期期中考試數(shù)學(xué)文卷 題型:解答題

(本題滿分14分)

已知三條直線  ,直線和直線,且的距離是

(1)求的值

(2)能否找到一點(diǎn),使得點(diǎn)同時(shí)滿足下面三個(gè)條件,①是第一象限的點(diǎn);②的距離是距離的,③點(diǎn)到的距離與的距離之比是,若能,求點(diǎn)的坐標(biāo),若不能,說(shuō)明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案