【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 若a1=1,且Sn=tan ,其中n∈N*.
(1)求實(shí)數(shù)t的值和數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿(mǎn)足bn=log3a2n , 求數(shù)列{ }的前n項(xiàng)和Tn

【答案】
(1)解:當(dāng)n=1時(shí),a1=S1=ta1 ,由a1=1,即1=t﹣ ,

解得:t= ,

∴Sn= an ,

當(dāng)n≥2時(shí),Sn1= an1 ,

∴an=Sn﹣Sn1=( an )﹣( an1 ),即an=3an1,

∴數(shù)列{an}是以1為首項(xiàng),以3為公比的等比數(shù)列,

∴an=a1qn1=3n1

當(dāng)n=1時(shí),an=3n1,成立,

∴數(shù)列{an}的通項(xiàng)公式an=3n1


(2)解:由(1)可知:bn=log3a2n=log332n1=2n﹣1,

= = ),

數(shù)列{ }的前n項(xiàng)和Tn,Tn= (1﹣ )+ )+…+ ),

= (1﹣ + +…+ ),

= (1﹣ ),

= ,

數(shù)列{ }的前n項(xiàng)和Tn=


【解析】(1)由當(dāng)n=1時(shí),a1=S1=ta1 ,由a1=1,即1=t﹣ ,即可求得t的值,Sn= an ,當(dāng)n≥2時(shí),Sn1= an1 ,an=Sn﹣Sn1 , 整理得:an=3an1 , 數(shù)列{an}是以1為首項(xiàng),以3為公比的等比數(shù)列,根據(jù)等比數(shù)列的通項(xiàng)公式求得數(shù)列{an}的通項(xiàng)公式;(2)由(1)可知:bn=log3a2n=log332n1=2n﹣1, = = ),利用“裂項(xiàng)法”即可求得數(shù)列{ }的前n項(xiàng)和Tn
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱柱ABC﹣A1B1C1中,AA1B1B為正方形,BB1C1C為菱形,B1C⊥AC1
(Ⅰ)求證:平面AA1B1B⊥平面BB1C1C;
(Ⅱ)若D是CC1中點(diǎn),∠ADB是二面角A﹣CC1﹣B的平面角,求直線AC1與平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)準(zhǔn)備在開(kāi)學(xué)時(shí)舉行一次高三年級(jí)優(yōu)秀學(xué)生座談會(huì),擬請(qǐng)20名來(lái)自本校高三(1)(2)(3)(4)班的學(xué)生參加,各班邀請(qǐng)的學(xué)生數(shù)如下表所示;

班級(jí)

高三(1)

高三(2)

高三(3)

高三(4)

人數(shù)

4

6

4

6

(1)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,求這3名學(xué)生中任意兩個(gè)均不屬于同一班級(jí)的概率;

(2)從這20名學(xué)生中隨機(jī)選出3 名學(xué)生發(fā)言,設(shè)來(lái)自高三(3)的學(xué)生數(shù)為,求隨機(jī)變量的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的不等式|x+a|≤b的解集為[﹣6,2].
(1)求實(shí)數(shù)a,b的值;
(2)若實(shí)數(shù)m,n滿(mǎn)足|am+n|< ,|m﹣bn|< ,求證:|n|<

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有5名男生、2名女生站成一排照相,

(1)兩女生要在兩端,有多少種不同的站法?

(2)兩名女生不相鄰,有多少種不同的站法?

(3)女生甲不在左端,女生乙不在右端,有多少種不同的站法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xlnx+ax(a∈R).
(Ⅰ)當(dāng)a=0,求f(x)的最小值;
(Ⅱ)若函數(shù)g(x)=f(x)+lnx在區(qū)間[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅲ)過(guò)點(diǎn)P(1,﹣3)恰好能作函數(shù)y=f(x)圖象的兩條切線,并且兩切線的傾斜角互補(bǔ),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左右焦點(diǎn)分別為,直線經(jīng)過(guò)橢圓的右焦點(diǎn)與橢圓交于兩點(diǎn),且.

(I)求直線的方程;

(II)已知過(guò)右焦點(diǎn)的動(dòng)直線與橢圓交于不同兩點(diǎn),是否存在軸上一定點(diǎn),使?(為坐標(biāo)原點(diǎn))若存在,求出點(diǎn)的坐標(biāo);若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,
(Ⅰ)求證:平面PED⊥平面PAC;
(Ⅱ)若直線PE與平面PAC所成的角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,該函數(shù)所表示的曲線上的一個(gè)最高點(diǎn)為由此最高點(diǎn)到相鄰的最低點(diǎn)間曲線與軸交于點(diǎn).

(1)函數(shù)解析式;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若,求的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案