如果隨機(jī)變量ξ~N(0,σ2),且P(-2<ξ≤0)="0.4" ,則P(ξ>2)等于:
A.0.1 | B.0.2 | C.0.3 | D.0.4 |
A
解析試題分析:本題考查正態(tài)分布曲線的性質(zhì),隨機(jī)變量ξ服從正態(tài)分布N(0,σ2),由此知曲線的對稱軸為Y軸,|ξ|>2包括了兩部分ξ>2或ξ<-2由此可得P(|ξ|>2)=1-P(-2≤ξ≤2),再由P(-2≤ξ≤0)=0.4,答案易解:∵隨機(jī)變量ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,∴P(-2≤ξ≤2)=0.8,∴P(|ξ|>2)=1-P(-2≤ξ≤2)=1-0.8=0.2,故P(ξ>2)=0.1選A
考點(diǎn):正態(tài)分布
點(diǎn)評:本題考查正態(tài)分布曲線的重點(diǎn)及曲線所表示的意義,解題的關(guān)鍵是正確正態(tài)分布曲線的重點(diǎn)及曲線所表示的意義,由曲線的對稱性求出概率,本題是一個數(shù)形結(jié)合的題,識圖很重要
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
甲乙兩人玩猜數(shù)字游戲,先由甲在心中任想一個數(shù)字,記為,再由乙猜甲剛才所想的數(shù)字,把乙猜的數(shù)字記為,且。若,則稱甲乙“心有靈犀”,F(xiàn)任意找兩人玩這個游戲,得出他們“心有靈犀”的概率為 ( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖所示,邊長為2的正方形中有一封閉曲線圍成的陰影區(qū)域,在正方形中隨機(jī)撒一粒豆子,它落在陰影區(qū)域內(nèi)的概率是,則陰影區(qū)域的面積為( )
A. | B. | C. | D.無法計算 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
有四個游戲盤面積相等,將它們水平放穩(wěn)后,在上面扔一顆玻璃小球,若小球落在陰影部分,則可中獎,小明要想增加中獎機(jī)會,應(yīng)選擇的游戲盤是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖;現(xiàn)有一迷失方向的小青蛙在3處,它每跳動一次可以等機(jī)會地進(jìn)入相鄰的任意一格(如若它在5處,跳動一次,只能進(jìn)入3處,若在3處,則跳動一次可以等機(jī)會進(jìn)入l,2,4,5處),則它在第三次跳動后,進(jìn)入5處的概率是
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)函數(shù).若從區(qū)間內(nèi)隨機(jī)選取一個實(shí)數(shù),則所選取的實(shí)數(shù)滿足的概率為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
現(xiàn)有編號為1—5的5名學(xué)生到電腦上查閱學(xué)習(xí)資料,而機(jī)房只有編號為1—4的4臺電腦可供使用,因此,有兩位學(xué)生必須共用同一臺電腦,而其他三位學(xué)生每人使用一臺,則恰有2位學(xué)生的編號與其使用的電腦編號相同的概率為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
籃子里裝有2個紅球,3個白球和4個黑球。某人從籃子中隨機(jī)取出兩個球,記事件A=“取出的兩個球顏色不同”,事件B=“取出一個紅球,一個白球”,則( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
從1,2,3,4,5中任取2個不同的數(shù),事件A=“取到的2個數(shù)之和為偶數(shù)”,事件B=“取到的2個數(shù)均為偶數(shù)”,則P()等于( )
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com