14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,(x≥2)}\\{f(x+3),(x<2)}\end{array}\right.$,則f(-4)=( 。
A.2B.4C.17D.5

分析 由函數(shù)性質(zhì)得f(-4)=f(-1)=f(2),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,(x≥2)}\\{f(x+3),(x<2)}\end{array}\right.$,
∴f(-4)=f(-1)=f(2)=22+1=5.
故選:D.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,已知sinA:sinB:sinC=3:5:7,則此三角形的最大內(nèi)角的度數(shù)等于$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)(x∈R)滿足f(-x)=f(x),f(x)=f(2-x),且當(dāng)x∈[0,1]時,f(x)=x3.又函數(shù)g(x)=|xcos(πx)|,則函數(shù)h(x)=g(x)-f(x)在$[-1,\frac{3}{2}]$上的零點(diǎn)個數(shù)為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知某算法的程序框圖如圖所示,若將輸出(x,y)的值依次記(x1,y1),(x2,y2),…(xn,yn),…
(1)若程序運(yùn)行中輸出的一個數(shù)組是(9,t),求t的值;
(2)程序結(jié)束時,共輸出(x,y)的組數(shù)位多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,一個幾何體的三視圖分別為兩個等腰直角三角形和一個邊長為2的正方形及其一條對角線,則該幾何體的側(cè)面積為( 。
A.$8(1+\sqrt{2})$B.$4(1+\sqrt{2})$C.$2(1+\sqrt{2})$D.$1+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知冪函數(shù)f(x)滿足f($\frac{1}{3}$)=9,則f(x)的圖象所分布的象限是( 。
A.只在第一象限B.第一、三象限C.第一、四象限D.第一、二象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=ax-1+3(a>0且a≠1)的圖象必經(jīng)過點(diǎn)( 。
A.(0,1)B.(1,1)C.(1,4)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.試討論函數(shù)f(x)=$\sqrt{1-{x}^{2}}$在區(qū)間[0,1]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知Sn為等差數(shù)列{an}的前n項和,公差為d且S5-S2=195.
(1)若d=-2,求數(shù)列{an}的通項公式;
(2)若在等比數(shù)列{bn}中,b1=13,b2=a4,求{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案